Transmission

By Bernd Sebastian Kamps
& Christian Hoffmann

Please find the figures
in the free PDF.

 

Viruses have substantially influenced human health, interactions with the ecosphere, and societal history and structures (Chappell 2019). In a highly connected world, microbial evolution is boosted and pathogens exploit human behaviors to their own benefit (Morens 2013). This was critically shown during the SARS epidemic in 2003 (Kamps-Hoffmann 2003), the outbreak of Middle East Respiratory Syndrome coronavirus (MERS-CoV) (Zaki 2012), the last great Ebola epidemic in West Africa (Arwady 2015, Heymann 2015) and the Zika epidemic in 2015-2017 (Fauci 2016). Over the same time period, more virulent strains of known respiratory pathogens – H5N1 influenza virus, tuberculosis, avian H7N9 influenza virus – have emerged (Kamps-Hoffmann 2006, Jassal 2009, Gao 2013).

The Virus

SARS-CoV-2, Severe Acute Respiratory Syndrome coronavirus 2, is a highly transmissible ‘complex killer’ (Cyranoski 2020) that forced half of humanity, 4 billion people, to bunker down in their homes in the early spring of 2020. The respiratory disease rapidly evolved into a pandemic (Google 2020). In most cases, the illness is asymptomatic or paucisymptomatic and self-limited. A subset of infected individuals has severe symptoms and sometimes prolonged courses (Garner 2020). Around 10% of infected people need hospitalization and around one third of them treatment in intensive care units. The overall mortality rate of SARS-CoV-2 infection seems to be less than 1%.

Coronaviruses are tiny spheres of about 70 to 80 nanometers (a millionth of a millimeter) on thin-section electron microscopy (Perlman 2019). Compared to the size of a human, SARS-CoV-2 is as small as a big chicken compared to the planet Earth (El País). The raison d’être of SARS-CoV-2 is to proliferate, like that of other species, for example H. sapiens sapiens who has been successful in populating almost every corner of the world, sometimes at the expense of other species. SARS-CoV-2, for now, seems to be on a similarly successful track. By 7 June, only a handful of countries can claim to have been spared by the pandemic.

SARS-CoV-2’s global success has multiple reasons. The new coronavirus highjacks the human respiratory system to pass from one individual to another when people sneeze, cough, shout and speak. It is at ease both in cold and in warm climates; and, most importantly and unlike the two other deadly coronaviruses SARS-CoV and MERS-CoV, it manages to get transmitted to the next individual before it develops symptoms in the first one (see below, Asymptomatic Infection, page 83). There is no doubt that SARS-CoV-2 has a bright future – at least until the scientific community develops a safe and efficient vaccine (see the chapter Immunology, page 125).

SARS-CoV-2 and its kin

SARS-CoV-2 is a coronavirus like

  • SARS-CoV (its cousin of the 2002/2003 epidemic),
  • MERS-CoV (Middle East Respiratory Syndrome coronavirus),
  • and a group of so-called CAR coronoviruses (for Community-Acquired Respiratory CoVs: 229E, OC43, NL63, HKU1) which account for 15 to 30% of common colds.

The CAR group viruses are highly transmissible and produce about 15 to 30% of the common colds, typically in the winter months. On the contrary, SARS-CoV and MERS-CoV have case fatality rates of 10% and 34%, respectively, but they never achieved pandemic spread. SARS-CoV-2, from a strictly viral point of view, is the shooting star in the coronavirus family: it combines high transmissibility with high morbidity and mortality.

SARS-CoV-2 is a virus like other commonly known viruses that cause human disease such as hepatitis C, hepatitic B, Ebola, influenza and human immunodeficiency viruses. (Note that the differences between them are bigger than between humans and amebas.) With the exception of influenza, these viruses have a harder time infecting humans than SARS-CoV-2. Hepatitis C virus (HCV), a major cause of chronic and often fatal liver disease, is mainly transmitted by percutaneous exposure to blood, by unsafe medical practices and, less frequently, sexually. The human immunodeficiency virus (HIV), in addition to exposure to blood and perinatal transmission, also exploits sexual contact as a potent transmission route. Hepatitis B virus (HBV) is an even more versatile spreader than HCV and HIV as it can be found in high titers in blood, cervical secretions, semen, saliva, and tears; even tiny amounts of blood or contaminated secretions can transmit the virus. Ideal infection environments for HBV include, for example, schools, institutions and hospitals where individuals are in close and prolonged contact.

Of note, apart from HIV and hepatitis B and C, most viral diseases have no treatment. For example, there is no treatment for measles, polio, or smallpox. For influenza, decades of research have produced two specific drugs which have not been able to demonstrate to reduce mortality – despite tests on thousands of patients. After 35 years of research, there is still no vaccine to prevent HIV infection.

Ecology of SARS-CoV-2

SARS-CoV-2 is present at high concentrations in the upper and lower respiratory tract (Zhu N 2020, Wang 2020, Huang 2020). The virus has also been found, albeit at low levels, in the kidney, liver, heart, brain, and blood (Puelles 2020). Outside the human body, the virus has been shown to be detectable as an aerosol (in the air) for up to three hours, up to 24 hours on cardboard and up to two to three days on plastic and stainless steel (van Doremalen 2020). Another study documented contamination of toilets (toilet bowl, sink, and door handle) and air outlet fans (Ong SWX 2020). This is in line with the experience from MERS where many environmental surfaces of patients’ rooms, including points frequently touched by patients or healthcare workers, were contaminated by MERS-CoV (Bin 2016).

Person-to-Person Transmission

Person-to-person transmission of SARS-CoV-2 was established within weeks of identification of the first cases (Chan JF 2020, Rothe 2020). Shortly after, it was suggested that asymptomatic individuals would probably account for a substantial proportion of all SARS-CoV-2 transmissions (Nishiura 2020, Li 2020). Viral load can be high 2-3 days before the onset of symptoms and almost half of all secondary infections are supposed to be caused by presymptomatic patients (He 2020).

A key factor in the transmissibility of SARS-CoV-2 is the high level of virus shedding in the upper respiratory tract (Wolfel 2020), even among paucisymptomatic patients. Pharyngeal virus shedding is very high during the first week of symptoms, with a peak at >7 x 108 RNA copies per throat swab on day 4. Infectious virus was readily isolated from samples derived from the throat or lung. That distinguishes it from SARS-CoV, where replication occured mainly in the lower respiratory tract (Gandhi 2020); SARS-CoV and MERS-CoV infect intrapulmonary epithelial cells more than cells of the upper airways (Cheng PK 2004, Hui 2018).

The shedding of viral RNA from sputum appears to outlast the end of symptoms and seroconversion is not always followed by a rapid decline in viral load (Wolfel 2020). This contrasts with influenza where persons with asymptomatic disease generally have lower quantitative viral loads in secretions from the upper respiratory tract than from the lower respiratory tract and a shorter duration of viral shedding than persons with symptoms (Ip 2017).

Routes of Transmission

Respiratory droplets vs aerosol

SARS-CoV-2 is spread predominantly via virus-containing droplets through sneezing, coughing, or when people interact with each other for some time in close proximity (usually less than one metre) (ECDC 2020, Chan JF 2020, Li Q 2020, Liu Y 2020). These droplets can then be inhaled or land on surfaces where they can be detectable for up to four hours on copper, up to 24 hours on cardboard and up to two to three days on plastic and stainless steel (van Doremalen 2020). Other people may come into contact with these droplets and get infected when they touch their nose, mouth or eyes.

SARS-CoV-2 was thought to be transmitted primarily through larger droplet particles, >5-10 μm in diameter, commonly referred to as respiratory droplets, which fall to the ground attracted by gravity. In the beginning of the pandemic SARS-CoV-2 was NOT thought to be transmitted via smaller particles, <5μm in diameter, which are referred to as droplet nuclei or aerosol. Recently, however, some authors have voiced concern that SARS-CoV-2 could also be spread via aerosol. They point to episodes during the 2003 SARS epidemic when an airborne route of transmission appeared to be a plausible explanation for the so-called Amoy Garden outbreak. On that occasion, the virus was aerosolized within the confines of very small bathrooms and may have been inhaled, ingested or transmitted indirectly by contact with fomites as the aerosol settled (WHO 2003). Other authors suggest that ‘Heating, Ventilation and Air Conditioning Systems’ (HVAC) when not adequately used may contribute to the transmission of the virus, as suggested by descriptions from Japan, Germany, and the Diamond Princess Cruise Ship (Correia 2020, Gormley 2020). As a matter of fact, SARS-CoV-2 has been shown to be detectable as an aerosol (in the air) for up to three hours (van Doremalen 2020) and in patients’ toilet areas (Liu Y 2020).

 

Figure 1. Transmission of a respiratory virus. 1) After coughing, sneezing, shouting and even after speaking – particularly loud speaking–, large droplets (green) drop to the ground around the young man. 2) In addition, some droplets, small and lightweight enough (red), are transported by air currents over longer distances. Whether the second – aerosol – transmission is an epidemiologically relevant transmission route in the SARS-CoV-2 pandemic, is currently being discussed. Adapted from Morawska 2020. Art work: Félix Prudhomme; YouTube: IYENSS. (This and the following illustration are under free license if credited correctly.)

 

Experimental support for these concerns comes from studies that visualize droplet formation at the exit of the mouth during violent expiratory events such as sneezing and coughing (Scharfman 2016, Bourouiba 2020; see also the video). These studies show that the lifetime of a droplet can be considerably longer than previously assumed. When analyzed with highly sensitive laser light scattering, loud speech was found to be able to emit thousands of oral fluid droplets per second which could linger in the air for minutes (Anfinrud 2020, Stadnytskyi 2020; see also the movies showing the experimental setup). Loud and persistent shouting as would be usual in noisy, closed and stagnant air environments (meat-packing facilities, discos, pubs, etc.) is now believed to produce the same number of droplets as produced by coughing (Chao 2020). Speech and other vocal activities such as singing have also been shown to generate air particles, with the rate of emission corresponding to voice loudness (Asadi 2019). Confined public spaces (e.g., restrooms or elevators) were discussed as a favorable environment in an outbreak in Wenzhou, China (Cai J 2020). Of note, several outbreaks are now linked to choir practices in the Netherlands, Germany and the US (Hamner 2020) (see also the chapter Epidemiology, page 19).

The question of whether SARS-CoV-2 is transmitted only via respiratory droplets (see a recent transmission experiment among hACE2 mice; Bao L 2020) or also via aerosol is crucial for the implementing of future prevention measures. In the former case, the current prevention recommendations of frequent hand-washing and maintaining a distance of at least one meter (arm’s length) (WHO 2020a) could be sufficient. In the case of proven airborne transmission over several meters, however, current distancing measures would need to be adapted, with far-reaching implications for cultural and economic life (theaters, cinemas, restaurants, pubs, shops, etc.). Some authors plead that the international and national authorities acknowledge the reality that the virus spreads through air, and recommend that adequate control measures be implemented to prevent further spread of the SARS-CoV-2 virus (Morawska 2020), including wearing suitable masks whenever infected persons may be nearby and providing adequate ventilation of enclosed spaces (Somsen 2020) where such persons are known to be or may recently have been (Meselson 2020).

The current evidence for aerosol transmission and resulting recommendations for prevention have been sublimely summarized by Prather et al. in five sentences: “Respiratory infections occur through the transmission of virus-containing droplets (>5 to 10 μm) and aerosols (≤5 μm) exhaled from infected individuals during breathing, speaking, coughing, and sneezing. Traditional respiratory disease control measures are designed to reduce transmission by droplets produced in the sneezes and coughs of infected individuals. However, a large proportion of the spread of coronavirus disease 2019 (COVID-19) appears to be occurring through airborne transmission of aerosols produced by asymptomatic individuals during breathing and speaking (Morawska 2020, Anderson 2020, Asadi 2019). Aerosols can accumulate, remain infectious in indoor air for hours, and be easily inhaled deep into the lungs. For society to resume, measures designed to reduce aerosol transmission must be implemented, including universal masking and regular, widespread testing to identify and isolate infected asymptomatic individuals (Prather 2020).”

Fomites

It is currently unclear whether and to which extent transmission of via fomites (e.g., elevator buttons, hand rails, restroom taps) is epidemiologically relevant (Cai J 2020). (A fomite is any inanimate object that, when contaminated with or exposed to infectious agents such as a virus, can transfer a disease to another person).

Mother-to-child

Mother-to-child transmission doesn’t seem to be a prominent route of SARS-CoV-2 transmission. There is one report of a newborn with elevated SARS-CoV-2 IgM antibodies who was exposed for 23 days from the time of the mother’s diagnosis of COVID-19 to delivery (Dong L 2020). However, there was no evidence for intrauterine vertical transmission among another group of nine women with COVID-19 pneumonia in late pregnancy (Chen H 2020).

Vaginal (n=24) versus elective cesarean (n=16) was addressed in a study from Northern Italy. In one case a newborn had a positive test after a vaginal operative delivery.

Two women with COVID-19 breastfed without a mask because infection was diagnosed in the post-partum period; their new-borns tested positive for SARS-CoV-2 infection. The authors conclude that although post-partum infection cannot be excluded with 100% certainty, vaginal delivery seems to be associated with a low risk of intrapartum SARS-CoV-2 transmission (Ferrazzi 2020).

In at least two cases, SARS-CoV-2 has been found in breast milk (Wu Y 2020, Groß 2020). As of May 2020, the Italian Society on Neonatology (SIN), endorsed by the Union of European Neonatal & Perinatal Societies (UENPS), recommended breastfeeding as advisable if a mother previously identified as COVID-19-positive or under investigation for COVID-19 was asymptomatic or paucisymptomatic at delivery. On the contrary, when a mother with COVID-19 is too sick to care for the newborn, the neonate should be managed separately and fed freshly expressed breast milk (Davanzo 2020, Davanzo 2020b [Italian]). This guidance may be subject to change in the coming months.

Stool, urine

Although no cases of fecal-oral transmission of SARS-CoV-2 have been reported thus far, a study from Zhuhai reports prolonged presence of SARS-CoV-2 viral RNA in fecal samples. Of the 41 (55%) of 74 patients with fecal samples that were positive for SARS-CoV-2 RNA, respiratory samples remained positive for SARS-CoV-2 RNA for a mean of 17 days and fecal samples remained positive for a mean of 28 days after first symptom onset (Wu Y 2020). In 22/133 patients, SARS–CoV-2 was still detected in the sputum or feces (up to 39 and 13 days, respectively) after pharyngeal swabs became negative (Chen 2020).

Until proof of the contrary, the possibility of fecal-oral transmission should not be excluded. Strict precautions must be observed when handling the stools of patients infected with coronavirus. Sewage from hospitals should also be properly disinfected (Yeo 2020). Fortunately, antiseptics and disinfectants such as ethanol or bleach have good activity on human coronaviruses (Geller 2012). During the SARS-CoV outbreak in 2003, where SARS-CoV was shown to survive in sewage for 14 days at 4°C and for 2 days at 20°C (Wang XW 2005), environmental conditions could have facilitated this route of transmission.

Blood products

SARS-CoV-2 is rarely detected in blood (Wang W 2020, Wolfel 2020). After screening of 2,430 donations in real-time (1,656 platelet and 774 whole blood), authors from Wuhan found plasma samples positive for viral RNA from 4 asymptomatic donors (Chang 2020). It remains unclear whether detectable RNA signifies infectivity.

In a Korean study, seven asymptomatic blood donors were later identified as COVID-19 cases. None of 9 recipients of platelets or red blood cell transfusions tested positive for SARS-CoV-2 RNA (Kwon 2020). More data are needed before transmission through transfusion can be declared safe.

Sexual transmission

It is unknown whether purely sexual transmission is possible. Scrupulously eluding infection via fomites and respiratory droplets during sexual intercourse would suppose remarkable acrobatics many people might not be willing to perform.

Cats and dogs

SARS-CoV-2 can be transmitted to cats and dogs. When inoculated with SARS-CoV-2, three cats transmitted the virus to three other cats. None of the cats showed symptoms, but all shedded virus for 4 to 5 days and developed antibody titers by day 24 (Halfmann 2020). In another study, two out of fifteen dogs from households with confirmed human cases of COVID-19 in Hong Kong were found to be infected. The genetic sequences of viruses from the two dogs were identical to the virus detected in the respective human cases (Sit 2020). It is too early to know if cats and dogs are potential intermediate hosts in chains of human–pet–human transmission.

Transmission Event

Transmission of a virus from one person to another depends on four variables:

  1. The nature of the virus;
  2. The nature of the transmitter;
  3. The nature of the transmittee (the person who will become infected);
  4. The transmission setting.

Virus

In order to stay in the evolutionary game, all viruses have to overcome a series of challenges. They must attach to cells; fuse with their membranes; release their nucleic acid into the cell; manage to make copies of themselves; and have the copies exit the cell to infect other cells. In addition, respiratory viruses must make their host cough and sneeze to get back into the environment again. Ideally, this happens before the hosts realize that they are sick. This is all the more amazing as SARS-CoV-2 is more like a piece of computer code than a living creature in sensu strictu (its 30,000 DNA base pairs are a mere 100,000th of the human genetic code). That doesn’t prevent the virus from being ferociously successful:

  • It attaches to the human angiotensin converting enzyme 2 (ACE2) receptor (Zhou 2020) which is present not only in nasopharyngeal and oropharyngeal mucosa, but also in lung cells, such as in type II pneumocytes. SARS-CoV-2 thus combines the high transmission rates of the common coronavirus NL63 (infection of the upper respiratory tract) with the severity of SARS in 2003 (lower respiratory tract);
  • It has a relatively long incubation time of around 5 days (influenza: 1-2 days), thus giving it more time to spread;
  • It is transmitted by asymptomatic individuals.

As mentioned above, SARS-CoV-2 can be viable for days (van Doremalen 2020). Environmental factors that might influence survival of the virus outside the human body will be discussed below (page 87).

The virologic determinants of more or less successful SARS-CoV-2 transmission are not yet fully understood.

Transmittor

Infectiousness seems to peak on or before symptom onset (He X 2020), with around half of secondary cases being possibly infected during the presymptomatic stage. The mean incubation is around 5 days (Lauer 2020, Li 2020, Zhang J 2020, Pung 2020), comparable to that of the coronaviruses causing SARS or MERS (Virlogeux 2016). Almost all symptomatic individuals will develop symptoms within 14 days of infection, beyond that only in rare cases (Bai Y 2020).

It is currently unknown if SARS-CoV-2 transmission correlates with the following characteristics of the index case (transmittor):

  • Symptom severity;
  • Large concentrations of virus in the upper and lower respiratory tract;
  • SARS-CoV-2 RNA in plasma;
  • In the future: reduced viral load due to drug treatment (as in people treated for HIV infection) [Cohen 2011, Cohen 2016, LeMessurier 2018])

SARS-CoV-2 transmission certainly correlates with a still ill-defined “super-spreader status” of the infected individual. For unknown reasons, some individuals – so-called super-spreaders – are remarkably contageous, capable of infecting dozens or hundreds of people, possibly because they breathe out many more particles than others when they talk (Asadi 2019), shout, cough or sneeze.

Transmission is more likely when the infected individual has few or no symptoms. Asymptomatic transmission of SARS-CoV-2 – proven a few weeks after the beginning of the pandemic (Bai Y 2020) – has justly been called the Achilles’ heel of the COVID-19 pandemic (Gandhi 2020). As shown during an outbreak in a skilled nursing facility, the percentage of asymptomatic individuals can be as high as 50% early (Arons 2020); note that most of these individuals would later develop some symptoms. Importantly, SARS-CoV-2 viral load was comparable in individuals with typical and atypical symptoms, and in those who were presymptomatic or asymptomatic. Seventeen of 24 specimens (71%) from presymptomatic persons had viable virus by culture 1 to 6 days before the development of symptoms (Arons 2020), suggesting that SARS-CoV-2 may be shed at high concentrations before symptom development. It is assumed that about 50% of all infections occur through presymptomatic transmission (He X 2020).

To what extent children contribute to the spread of SARS-CoV-2 infection in a community is unknown. Infants and young children are normally at high risk for respiratory tract infections. The immaturity of the infant immune system may alter the outcome of viral infection and is thought to contribute to the severe episodes of influenza or respiratory syncytial virus infection in this age group (Tregoning 2010). Until now, however, there is a surprising absence of pediatric patients with COVID-19, something that has perplexed clinicians, epidemiologists, and scientists (Kelvin 2020). Although the discovery of a pediatric inflammatory multisystem syndrome (PIMS) in SARS-CoV-2 infection in children (Verdoni 2020, Viner 2020, ECDC 15 May 2020) came as a surprise, the fact that children are susceptible to SARS-CoV-2 infection but frequently do not have notable disease raises the possibility that children could be an important source of viral transmission and amplification in the community. There is an urgent need for further investigation of the role children have in SARS-CoV-2 transmission chains (Kelvin 2020).

SARS-CoV-2 is highly transmissible, but given the right circumstances and the right prevention precautions, zero transmission can be achieved. In one case report, there was no evidence of transmission to 16 close contacts, among them 10 high-risk contacts, from a patient with mild illness and positive tests for up to 18 days after diagnosis (Scott 2020).

Transmittee

Upon exposure to SARS-CoV-2, the virus may come in contact with cells of the upper or lower respiratory tract of an individual. Numerous cell entry mechanisms of SARS-CoV-2 have been identified that potentially contribute to the immune evasion, cell infectivity, and wide spread of SARS-CoV-2 (Shang J 2020). (The pathogenesis of COVID-19 will be discussed in an upcoming separate COVID Reference chapter.) Susceptibility to SARS-CoV-2 infection is probably influenced by the host genotype (Williams 2020). This would explain the higher percentage of severe COVID-19 in men (Piccininni 2020) and possibly the similar disease course in some twins in the UK (The Guardian, 5 May 2020).

A high percentage of SARS-CoV-2 seronegative individuals have SARS-CoV-2 reactive T cells. This is explained by previous exposure to other coronaviruses (“common cold” coronaviruses) which have proteins that are highly similar to those of SARS-CoV-2. It is still unclear whether these cross-reactive T cells confer some degree of protection, are inconsequential or even potentially harmful if someone who possesses these cells becomes infected with SARS-CoV-2 (Braun 2020, Grifoni 2020).

The “right” genotype may not be sufficient in the presence of massive exposure, for example by numerous infected people and on multiple occassions as might happen, for example, in health care institutions being overwhelmed during the beginning of an epidemic. It is known from other infectious diseases that viral load can influence the incidence and severity of disease. Although the evidence is limited, high infection rates among health workers have been attributed to more frequent contact with infected patients, and frequent exposure to excretia with high viral load (Little 2020).

Transmission setting

The transmission setting, i.e., the actual place where the transmission of SARS-CoV-2 occurs, is the final element in the succession of events that lead to the infection of an individual. High population density which facilitates super-spreading events (see also chapter Epidemiology, Transmission Hotspots, page 20) are key to widespread transmission of SARS-CoV-2.

Super-spreading events

Transmission of SARS-CoV and MERS-CoV, too, occurred to a large extent by means of super-spreading events (Peiris 2004, Hui 2018). Super-spreading has been recognized for years to be a normal feature of disease spread (Lloyd-Smith 2005). One group suggested that 80% of secondary transmissions could be caused by a small fraction of infectious individuals (around 10%). A value called the dispersion factor (k) describes this phenomenon. The lower the k is, the more transmission comes from a small number of people (Kupferschmidt 2020). While SARS was estimated to have a k of 0.16 (Lloyd-Smith 2005) and MERS of 0.25, in the flu pandemic of 1918, in contrast, the value was about one, indicating that clusters played less of a role (Endo 2020). For the SARS-CoV-2 pandemic, the dispersion factor (k) is currently thought to be higher than for SARS and lower than for influenza (Endo 2020, Miller 2020, On Kwok 2020).

Examples of SARS-CoV-2 clusters have been linked to a wide range of mostly indoor settings (Leclerc 2020). In 318 clusters of three or more cases involving 1245 confirmed cases, only a single outbreak originated in an outdoor environment (Qian H 2020). In one study, the odds that a primary case transmitted COVID-19 in a closed environment was around 20 times greater compared to an open-air environment (Nishiura 2020).

Transmission clusters, partly linked to super-spreader events, have been reported since the very beginning of the SARS-CoV-2 pandemic:

Temperature and climate

Another variable still poorly understood is ambient temperature and humidity.

2003: SARS-CoV

The transmission of coronaviruses can be affected by several factors, including the climate (Hemmes 1962). Looking back to the 2003 SARS epidemic, we find that the stability of the first SARS virus, SARS-CoV, depended on temperature and relative humidity. A study from Hong Kong, Guangzhou, Beijing, and Taiyuan suggested that the SARS outbreak in 2002/2003 was significantly associated with environmental temperature. The study provided some evidence that there was a higher possibility for SARS to reoccur in spring than in autumn and winter (Tan 2005). It was shown that SARS-CoV remained viable for more than 5 days at temperatures of 22–25°C and relative humidity of 40–50%, that is, typical air-conditioned environments (Chan KH 2011). However, viability decreased after 24 h at 38°C and 80–90% relative humidity. The better stability of SARS coronavirus in an environment of low temperature and low humidity could have facilitated its transmission in subtropical areas (such as Hong Kong) during the spring and in air-conditioned environments. It might also explain why some Asian countries in the tropics (such as Malaysia, Indonesia or Thailand) with high temperature and high relative humidity environment did not have major community SARS outbreaks (Chan KH 2011).

2020: SARS-CoV-2

It is as yet unclear as to whether and to what extent climatic factors influence virus survival outside the human body and might influence local epidemics. SARS-CoV-2 is not readily inactivated at room temperature and by drying like other viruses, for example herpes simplex virus. One study mentioned above showed that SARS-CoV-2 can be detectable as an aerosol (in the air) for up to three hours, up to four hours on copper, up to 24 hours on cardboard and up to two to three days on plastic and stainless steel (van Doremalen 2020).

A few studies suggest that low temperature might enhance the transmissibility of SARS-CoV-2 (Triplett 2020; Wang 2020b, Tobías 2020) and that the arrival of summer in the northern hemisphere could reduce the transmission of the COVID-19. A possible association of the incidence of COVID-19 and both reduced solar irradiance and increased population density has been discussed (Guasp 2020). It was reported that simulated sunlight rapidly inactivated SARS-CoV-2 suspended in either simulated saliva or culture media and dried on stainless steel plates while no significant decay was observed in darkness over 60 minutes (Ratnesar-Shumate 2020). However, another study concluded that transmission was likely to remain high even at warmer temperatures (Sehra 2020). In particular the current epidemics in Brazil and India – countries with high temperatures – should temper hopes that COVID “simply disappears like a miracle”. Warm and humid summer conditions alone might be unlikely to limit substantially new important outbreaks (Luo 2020, Baker 2020, Collins 2020).

Outlook

Less than 6 months after the first SARS-CoV-2 outbreak in China, the transmission dynamics driving the pandemic are coming into focus.

It now appears that a high percentage (as high as 80%?) of secondary transmissions could be caused by a small fraction of infectious individuals (as low as 10%?; Endo 2020); if this is the case, then the more people are grouped together, the higher the probability that a superspreader is part of the group.

It also appears that aerosol transmission might play an important role in SARS-CoV-2 transmission (Prather 2020); if this is the case, then building a wall around this same group of people and putting a ceiling above them further enhances the probability of SARS-CoV-2 infection.

It finally appears that shouting and speaking loudly emits thousands of oral fluid droplets per second which could linger in the air for minutes (Anfinrud 2020, Stadnytskyi 2020, Chao 2020, Asadi 2019); if this is the case, then creating noise (machines, music) around people grouped in a closed environment would create the perfect setting for a superspreader event.

Over the coming months, the scientific community will try and

  • define more precisely the role of aerosols in the transmission of SARS-CoV-2;
  • unravel the secrets of super-spreading;
  • advance our understanding of host factors involved in the successful “seeding” of SARS-CoV-2 infection;
  • elucidate the role of children in the transmission of the virus at the community level;
  • continue to describe the conditions under which people should be allowed to gather in larger groups;

Without a coronavirus vaccine, nobody will return to a “normal” pre-2020 way of life. The most promising exit strategy for the coronavirus crisis is an efficient vaccine that can be rolled out safely and affordably to billions of people. Thousands of researchers are working around the clock, motivated by fame (becoming the next Dr. Salk?) and money (becoming the next Scrooge McDuck?). However, despite these efforts, it is not even certain that developing a COVID-19 vaccine is possible (Piot 2020, cited by Draulens). Until the worldwide availability of a vaccine, the only feasable prevention scheme is a potpourri of physical distancing (Kissler 2020), intensive testing, case isolation, contact tracing, quarantine (Ferretti 2020) and, as a last (but not impossible) resort, local lockdowns.

References

AM Zaki, S van Boheemen, TM Bestebroer, et al. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 2012; 367:1814-1820. PubMed: https://pubmed.gov/23075143. Fulltext: https://doi.org/10.1056/nejmoa1211721

Anderson EL, Turnham P, Griffin JR, Clarke CC. Consideration of the Aerosol Transmission for COVID-19 and Public Health. Risk Anal. 2020 May;40(5):902-907. PubMed: https://pubmed.gov/32356927. Full-text: https://doi.org/10.1111/risa.13500

Anfinrud P, Stadnytskyi V, Bax CE, Bax A. Visualizing Speech-Generated Oral Fluid Droplets with Laser Light Scattering. N Engl J Med. 2020 Apr 15. PubMed: https://pubmed.gov/32294341. Full-text: https://doi.org/10.1056/NEJMc2007800

Arons MM, Hatfield KM, Reddy SC, et al. Presymptomatic SARS-CoV-2 Infections and Transmission in a Skilled Nursing Facility. N Engl J Med. 2020 Apr 24. PubMed: https://pubmed.gov/32329971 . Full-text: https://doi.org/10.1056/NEJMoa2008457

Arwady MA, Bawo L, Hunter JC, et al. Evolution of ebola virus disease from exotic infection to global health priority, Liberia, mid-2014. Emerg Infect Dis. 2015 Apr;21(4):578-84. PubMed: https://pubmed.gov/25811176. Full-text: https://doi.org/10.3201/eid2104.141940

Asadi S, Wexler AS, Cappa CD, Barreda S, Bouvier NM, Ristenpart WD. Aerosol emission and superemission during human speech increase with voice loudness. Sci Rep. 2019 Feb 20;9(1):2348. PubMed: https://pubmed.gov/30787335. Full-text: https://doi.org/10.1038/s41598-019-38808-z

Baeten JM, Kahle E, Lingappa JR, et al. Genital HIV-1 RNA predicts risk of heterosexual HIV-1 transmission. Sci Transl Med. 2011 Apr 6;3(77):77ra29. PubMed: https://pubmed.gov/21471433. Full-text: https://doi.org/10.1126/scitranslmed.3001888

Baggett TP, Keyes H, Sporn N, Gaeta JM. Prevalence of SARS-CoV-2 Infection in Residents of a Large Homeless Shelter in Boston. JAMA. 2020 Apr 27. pii: 2765378. PubMed: https://pubmed.gov/32338732. Full-text: https://doi.org/10.1001/jama.2020.6887

Baker RE, Yang W, Vecchi GA, Metcalf CJE, Grenfell BT. Susceptible supply limits the role of climate in the early SARS-CoV-2 pandemic. Science. 2020 May 18:eabc2535. PubMed: https://pubmed.gov/32423996. Full-text: https://doi.org/10.1126/science.abc2535

Bai Y, Yao L, Wei T, et al. Presumed Asymptomatic Carrier Transmission of COVID-19. JAMA. 2020 Feb 21. PubMed: https://pubmed.gov/32083643. Full-text: https://doi.org/10.1001/jama.2020.2565 ^

Bao L, Gao H, Deng W, et al. Transmission of SARS-CoV-2 via close contact and respiratory droplets among hACE2 mice. J Inf Dis 2020, May 23. Full-text:  https://doi.org/10.1093/infdis/jiaa281

Bi Q, Wu Y, Mei S, et al. Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study. Lancet Infect Dis. 2020 Apr 27. pii: S1473-3099(20)30287-5. PubMed: https://pubmed.gov/32353347. Full-text: https://doi.org/10.1016/S1473-3099(20)30287-5

Bin SY, Heo JY, Song MS, et al. Environmental Contamination and Viral Shedding in MERS Patients During MERS-CoV Outbreak in South Korea. Clin Infect Dis. 2016 Mar 15;62(6):755-60. PubMed: https://pubmed.gov/26679623. Full-text: https://doi.org/10.1093/cid/civ1020

Bourouiba L. Turbulent Gas Clouds and Respiratory Pathogen Emissions: Potential Implications for Reducing Transmission of COVID-19. JAMA. 2020 Mar 26. pii: 2763852. PubMed: https://pubmed.gov/32215590. Full-text: https://doi.org/10.1001/jama.2020.4756

Braun J, Loyal L, Frentsch, M, et al. Presence of SARS-CoV-2-reactive T cells in COVID-19 patients and healthy donors. medRxiv 22 April 2020. Full-text: https://doi.org/10.1101/2020.04.17.20061440 (accessed 2 June 2020)

Cai J, Sun W, Huang J, Gamber M, Wu J, He G. Indirect Virus Transmission in Cluster of COVID-19 Cases, Wenzhou, China, 2020. Emerg Infect Dis. 2020 Mar 12;26(6). PubMed: https://pubmed.gov/32163030. Fulltext: https://doi.org/10.3201/eid2606.200412

CDC 200311. Centers for Disease Control and Prevention. Nursing home care. March 11, 2016. https://www.cdc.gov/nchs/fastats/nursing-home-care.htm (accessed 12 May 2020

CDC 200403. Centers for Disease Control and Prevention. Use of cloth face coverings to help slow the spread of COVID-19. April 3, 202. https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/cloth-face-cover.html (accessed 12 May 2020)

Cenziper D, Jacobs J, Mulcahy S. Nearly 1 in 10 nursing homes nationwide report coronavirus cases. Washington Post. April 20, 2020. https://www.washingtonpost.com/business/2020/04/20/nearly-one-10-nursing-homes-nationwide-report-coronavirus-outbreaks (accessed 12 May 2020)

Chan JF, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020 Feb 15;395(10223):514-523. PubMed: https://pubmed.gov/31986261. Fulltext: https://doi.org/10.1016/S0140-6736(20)30154-9

Chan JF, Yuan S, Zhang AJ, et al. Surgical mask partition reduces the risk of non-contact transmission in a golden Syrian hamster model for Coronavirus Disease 2019 (COVID-19). Clin Infect Dis. 2020 May 30. PubMed: https://pubmed.gov/32472679 . Full-text: https://doi.org/10.1093/cid/ciaa644

Chan KH, Peiris JS, Lam SY, Poon LL, Yuen KY, Seto WH. The Effects of Temperature and Relative Humidity on the Viability of the SARS Coronavirus. Adv Virol. 2011;2011:734690. PubMed: https://pubmed.gov/22312351. Full-text: https://doi.org/10.1155/2011/734690

Chappell JD, Dermody TS. Biology of Viruses and Viral Diseases. In: Bennett JE, Dolin R, Blaser MJ (2019). Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, p. 1795. Elsevier Inc. https://expertconsult.inkling.com/read/bennett-mandell-douglas-principle-practice-infect-diseases-9e/chapter-131/biology-of-viruses-and-viral

Chen H, Guo J, Wang C, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet. 2020 Mar 7;395(10226):809-815. PubMed: https://pubmed.gov/32151335. Full-text: https://doi.org/10.1016/S0140-6736(20)30360-3

Cheng HY, Jian SW, Liu DP, Ng TC, Huang WT, Lin HH; Taiwan COVID-19 Outbreak Investigation Team. Contact Tracing Assessment of COVID-19 Transmission Dynamics in Taiwan and Risk at Different Exposure Periods Before and After Symptom Onset. JAMA Intern Med. 2020 May 1:e202020. PubMed: https://pubmed.gov/32356867. Full-text: https://doi.org/10.1001/jamainternmed.2020.2020

Cheng PK, Wong DA, Tong LK, et al. Viral shedding patterns of coronavirus in patients with probable severe acute respiratory syndrome. Lancet. 2004 May 22;363(9422):1699-700. PubMed: https://pubmed.gov/15158632. Full-text: https://doi.org/10.1016/S0140-6736(04)16255-7

Chu DK, Akl EA, Duda S, et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. The Lancet, June 1. Full-text: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)31142-9/fulltext

Cohen MS, Chen YQ, McCauley M, et al. Antiretroviral Therapy for the Prevention of HIV-1 Transmission. N Engl J Med. 2016 Sep 1;375(9):830-9. PubMed: https://pubmed.gov/27424812. Full-text: https://doi.org/10.1056/NEJMoa1600693

Cohen MS, Chen YQ, McCauley M, et al. Prevention of HIV-1 infection with early antiretroviral therapy. N Engl J Med. 2011 Aug 11;365(6):493-505. PubMed: https://pubmed.gov/21767103. Full-text: https://doi.org/10.1056/NEJMoa1105243

Collins F. Will Warm Weather Slow Spread of Novel Coronavirus? NIH Director’s Blog, 2 June 2020. Full-text: https://directorsblog.nih.gov/2020/06/02/will-warm-weather-slow-spread-of-novel-coronavirus

Correia G, Rodrigues L, Gameiro da Silva M, Goncalves T. Airborne route and bad use of ventilation systems as non-negligible factors in SARS-CoV-2 transmission. Med Hypotheses. 2020 Apr 25;141:109781. PubMed: https://pubmed.gov/32361528. Full-text: https://doi.org/10.1016/j.mehy.2020.109781

Cowling BJ, Ali ST, Ng TWY, et al. Impact assessment of non-pharmaceutical interventions against coronavirus disease 2019 and influenza in Hong Kong: an observational study. Lancet Public Health. 2020 Apr 17. PubMed: https://pubmed.gov/32311320. Full-text: https://doi.org/10.1016/S2468-2667(20)30090-6

Cyranoski D. Profile of a killer: the complex biology powering the coronavirus pandemic. Nature. 2020 May;581(7806):22-26. PubMed: https://pubmed.gov/32367025. Full-text: https://doi.org/10.1038/d41586-020-01315-7

Davanzo R, Moro G, Sandri F, Agosti M, Moretti C, Mosca F. Breastfeeding and coronavirus disease-2019: Ad interim indications of the Italian Society of Neonatology endorsed by the Union of European Neonatal & Perinatal Societies. Matern Child Nutr. 2020 Apr 3:e13010. PubMed: https://pubmed.gov/32243068. Full-text: https://doi.org/10.1111/mcn.13010

Davanzo R, Mosca F, Moro G, Sandri F, Agosti M. Allattamento e gestione del neonato in corso di pandemia da SARS-CoV-2 – Indicazioni ad interim della Società Italiana di Neonatologia (SIN); Versione 3. Società Italiana di Neonatologia. 2020b May 10. Full-text (Italian): https://www.sin-neonatologia.it/wp-content/uploads/2020/03/SIN.COVID19-10-maggio.V3-Indicazioni-1.pdf

Dong L, Tian J, He S, et al. Possible Vertical Transmission of SARS-CoV-2 From an Infected Mother to Her Newborn. JAMA. 2020 Mar 26. pii: 2763853. PubMed: https://pubmed.gov/32215581. Full-text: https://doi.org/10.1001/jama.2020.4621

Draulens D: ‘Finally, a virus got me.’ Scientist who fought Ebola and HIV reflects on facing death from COVID-19. Science Magazine News, 8 May (accessed 12 May): https://www.sciencemag.org/news/2020/05/finally-virus-got-me-scientist-who-fought-ebola-and-hiv-reflects-facing-death-covid-19

EACS. European AIDS Clinical Society. EACS Guidelines 10.0, November 2019. Full-text: https://www.eacsociety.org/guidelines/eacs-guidelines/eacs-guidelines.html (accessed 22 May 2020)

Earhart KC, Beadle C, Miller LK, et al. Outbreak of influenza in highly vaccinated crew of U.S. Navy ship. Emerg Infect Dis. 2001 May-Jun;7(3):463-5. PubMed: https://pubmed.gov/11384530. Full-text: https://wwwnc.cdc.gov/eid/article/7/3/01-7320_article

ECDC 15 May 2020. Rapid risk assessment: Paediatric inflammatory multisystem syndrome and SARS -CoV-2 infection in children (accessed 18 May 2020). Full-text: https://www.ecdc.europa.eu/en/publications-data/paediatric-inflammatory-multisystem-syndrome-and-sars-cov-2-rapid-risk-assessment

ECDC 2020. Q & A on COVID-19. Web page:  https://www.ecdc.europa.eu/en/covid-19/questions-answers (accessed 15 May 2020).

Endo A, Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group, Abbott S et al. Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside China. Wellcome Open Res 2020, 5:67. Full-text: https://doi.org/10.12688/wellcomeopenres.15842.1

Fan C, Lei D, Fang C, et al. Perinatal Transmission of COVID-19 Associated SARS-CoV-2: Should We Worry? Clin Infect Dis. 2020 Mar 17. pii: 5809260. PubMed: https://pubmed.gov/32182347. Full-text: https://doi.org/10.1093/cid/ciaa226

Fauci AS, Morens DM. Zika Virus in the Americas–Yet Another Arbovirus Threat. N Engl J Med. 2016 Feb 18;374(7):601-4. PubMed: https://pubmed.gov/26761185. Full-text: https://doi.org/10.1056/NEJMp1600297

Ferrazzi E, Frigerio L, Savasi V, et al. Vaginal delivery in SARS-CoV-2 infected pregnant women in Northern Italy: a retrospective analysis. BJOG. 2020 Apr 27. PubMed: https://pubmed.gov/32339382. Full-text: https://doi.org/10.1111/1471-0528.16278

Ferretti L, Wymant C, Kendall M, et al. Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. Science. 2020 May 8;368(6491). pii: science.abb6936. PubMed: https://pubmed.gov/32234805. Full-text: https://doi.org/10.1126/science.abb6936

Gámbaro F, Behillil S, Baidaliuk A et al. Introductions and early spread of SARS-CoV-2 in France. bioRxiv 24 April. Abstract: https://www.biorxiv.org/content/10.1101/2020.04.24.059576v1

Gandhi M, Yokoe DS, Havlir DV. Asymptomatic Transmission, the Achilles´ Heel of Current Strategies to Control Covid-19. N Engl J Med. 2020 Apr 24. PubMed: https://pubmed.gov/32329972. Full-text: https://doi.org/10.1056/NEJMe2009758

Gao R, Cao B, Hu Y, et al. Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med. 2013 May 16;368(20):1888-97. PubMed: https://pubmed.gov/23577628. Full-text: https://doi.org/10.1056/NEJMoa1304459

Garner P. For 7 weeks I have been through a roller coaster of ill health, extreme emotions, and utter exhaustion. The BMJ Opinion, 5 May 2020. Full-text: https://blogs.bmj.com/bmj/2020/05/05/paul-garner-people-who-have-a-more-protracted-illness-need-help-to-understand-and-cope-with-the-constantly-shifting-bizarre-symptoms/ (accessed 16 May 2020)

Geller C, Varbanov M, Duval RE. Human coronaviruses: insights into environmental resistance and its influence on the development of new antiseptic strategies. Viruses. 2012 Nov 12;4(11):3044-68. PubMed: https://pubmed.gov/23202515. Full-text: https://doi.org/10.3390/v4113044

Ghinai I, McPherson TD, Hunter JC, et al. First known person-to-person transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the USA. Lancet. 2020 Apr 4;395(10230):1137-1144. PubMed: https://pubmed.gov/32178768 . Full-text: https://doi.org/10.1016/S0140-6736(20)30607-3

Google. Coronavirus (COVID-19). Google News 2020. Web page: https://news.google.com/covid19/map (accessed 16 May 2020).

Gormley M, Aspray TJ, Kelly DA. COVID-19: mitigating transmission via wastewater plumbing systems. Lancet Glob Health. 2020 May;8(5):e643. PubMed: https://pubmed.gov/32213325. Full-text: https://doi.org/10.1016/S2214-109X(20)30112-1

Gray RH, Wawer MJ, Brookmeyer R, et al. Probability of HIV-1 transmission per coital act in monogamous, heterosexual, HIV-1-discordant couples in Rakai, Uganda. Lancet. 2001 Apr 14;357(9263):1149-53. PubMed: https://pubmed.gov/11323041. Full-text: https://doi.org/10.1016/S0140-6736(00)04331-2

Grifoni A, Weiskopf D, Ramirez SI, et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell. 2020 May 20:S0092-8674(20)30610-3. PubMed: https://pubmed.gov/32473127. Full-text: https://doi.org/10.1016/j.cell.2020.05.015

Groß R, Conzelmann C, Müller JA, et al. Detection of SARS-CoV-2 in human breastmilk. Lancet. 2020 May 21. PubMed: https://pubmed.gov/32446324. Full-text: https://doi.org/10.1016/S0140-6736(20)31181-8

Guardian (The). Genetics in focus after coronavirus deaths of siblings and twins. 5 May 2020. https://www.theguardian.com/world/2020/may/05/genetics-in-focus-after-coronavirus-deaths-of-siblings-and-twins (accessed 18 May 2020)

Guasp M, Laredo C, Urra X. Higher solar irradiance is associated with a lower incidence of COVID-19. Clin Infect Dis. 2020 May 19:ciaa575. PubMed: https://pubmed.gov/32426805. Full-text: https://doi.org/10.1093/cid/ciaa575

Haider N, Yavlinsky A, Simons D, et al. Passengers destinations from China: low risk of Novel Coronavirus (2019-nCoV) transmission into Africa and South America. Epidemiol Infect 2020;148: PubMed: https://pubmed.gov/32100667. Full-text: https://doi.org/10.1017/S0950268820000424

Halfmann PJ, Hatta M, Chiba S, et al. Transmission of SARS-CoV-2 in Domestic Cats. N Engl J Med. 2020 May 13. PubMed: https://pubmed.gov/32402157. Full-text: https://doi.org/10.1056/NEJMc2013400

Hamner L, Dubbel P, Capron I, et al. High SARS-CoV-2 Attack Rate Following Exposure at a Choir Practice – Skagit County, Washington, March 2020. MMWR Morb Mortal Wkly Rep. 2020 May 15;69(19):606-610. PubMed: https://pubmed.gov/32407303. Full-text: https://doi.org/10.15585/mmwr.mm6919e6

He X, Lau EHY, Wu P, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med. 2020 Apr 15. pii: 10.1038/s41591-020-0869-5. PubMed: https://pubmed.gov/32296168. Full-text: https://doi.org/10.1038/s41591-020-0869-5

Hemmes JH, Winkler KC, Kool SM. Virus survival as a seasonal factor in influenza and poliomylitis. Antonie Van Leeuwenhoek. 1962;28:221-33. PubMed: https://pubmed.gov/13953681. Full-text: https://doi.org/10.1007/BF02538737

Heymann DL, Chen L, Takemi K, et al. Global health security: the wider lessons from the west African Ebola virus disease epidemic. Version 2. Lancet. 2015 May 9;385(9980):1884-901. PubMed: https://pubmed.gov/25987157. Full-text: https://doi.org/10.1016/S0140-6736(15)60858-3

Hijnen D, Marzano AV, Eyerich K, et al. SARS-CoV-2 Transmission from Presymptomatic Meeting Attendee, Germany. Emerg Infect Dis. 2020 May 11;26(8). PubMed: https://pubmed.gov/32392125. Full-text: https://doi.org/10.3201/eid2608.201235

Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020 Feb 15;395(10223):497-506. PubMed: https://pubmed.gov/31986264. Full-text: https://doi.org/10.1016/S0140-6736(20)30183-5

Hui DS, Azhar EI, Kim YJ, Memish ZA, Oh MD, Zumla A. Middle East respiratory syndrome coronavirus: risk factors and determinants of primary, household, and nosocomial transmission. Lancet Infect Dis. 2018 Aug;18(8):e217-e227. PubMed: https://pubmed.gov/29680581. Full-text: https://doi.org/10.1016/S1473-3099(18)30127-0

Ip DK, Lau LL, Leung NH, et al. Viral Shedding and Transmission Potential of Asymptomatic and Paucisymptomatic Influenza Virus Infections in the Community. Clin Infect Dis. 2017 Mar 15;64(6):736-742. PubMed: https://pubmed.gov/28011603. Full-text: https://doi.org/10.1093/cid/ciw841

Jassal M, Bishai WR. Extensively drug-resistant tuberculosis. Lancet Infect Dis. 2009 Jan;9(1):19-30. PubMed: https://pubmed.gov/18990610. Full-text: https://doi.org/10.1016/S1473-3099(08)70260-3

Jia JS, Lu X, Yuan Y. et al. Population flow drives spatio-temporal distribution of COVID-19 in China. Nature 2020. Full-text: https://www.nature.com/articles/s41586-020-2284-y#citeas

Jiang XL, Zhang XL, Zhao XN, et al. Transmission potential of asymptomatic and paucisymptomatic SARS-CoV-2 infections: a three-family cluster study in China. J Infect Dis. 2020 Apr 22. pii: 5823691. PubMed: https://pubmed.gov/32319519. Full-text: https://doi.org/10.1093/infdis/jiaa206

Jing QL, Liu MJ, Yuan J et al. Household Secondary Attack Rate of COVID-19 and Associated Determinants. MedRxiv 15 April 2020. Abstract: https://doi.org/10.1101/2020.04.11.20056010

Kamps BS, Hoffmann C, et al. Influenza Report. Flying Publisher 2006. http://www.InfluenzaReport.com  (accessed 20 May 2020).

Kamps BS, Hoffmann C, et al. SARS Reference. Flying Publisher 2003. http://www.SARSReference.com  (accessed 20 May 2020).

Kelvin AA, Halperin S. COVID-19 in children: the link in the transmission chain. Lancet Infect Dis. 2020 Mar 25. pii: S1473-3099(20)30236-X. PubMed: https://pubmed.gov/32220651. Full-text: https://doi.org/10.1016/S1473-3099(20)30236-X

Kim S, Jeong YD, Byun JH, et al. Evaluation of COVID-19 epidemic outbreak caused by temporal contact-increase in South Korea. Int J Infect Dis. 2020 May 14. PubMed: https://pubmed.gov/32417246. Full-text: https://doi.org/10.1016/j.ijid.2020.05.036

Kissler SM, Tedijanto C, Goldstein E, Grad YH, Lipsitch M. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science. 2020 Apr 14. pii: science.abb5793. PubMed: https://pubmed.gov/32291278. Full-text: https://doi.org/10.1126/science.abb5793

Korea Centers for Disease Control and Prevention. Middle East Respiratory Syndrome Coronavirus Outbreak in the Republic of Korea, 2015. Osong Public Health Res Perspect. 2015 Aug;6(4):269-78. PubMed: https://pubmed.gov/26473095. Full-text: https://doi.org/10.1016/j.phrp.2015.08.006

Kupferschmidt K. Why do some COVID-19 patients infect many others, whereas most don’t spread the virus at all? Science Magazine 19 May. Full-text: https://www.sciencemag.org/news/2020/05/why-do-some-covid-19-patients-infect-many-others-whereas-most-don-t-spread-virus-all (accessed 31 May 2020).

Kuteifan K, Pasquier P, Meyer C, Escarment J, Theissen O. The outbreak of COVID-19 in Mulhouse : Hospital crisis management and deployment of military hospital during the outbreak of COVID-19 in Mulhouse, France. Ann Intensive Care. 2020 May 19;10(1):59. PubMed: https://pubmed.gov/32430597. Full-text: https://doi.org/10.1186/s13613-020-00677-5

Leclerc QJ, Fuller NM, Knight LE, Funk S, CMMID COVID-19 Working Group, Knight GM. What settings have been linked to SARS-CoV-2 transmission clusters? Wellcome Open Res 2020, 5:83. Full-text: https://doi.org/10.12688/wellcomeopenres.15889.1

LeMessurier J, Traversy G, Varsaneux O, et al. Risk of sexual transmission of human immunodeficiency virus with antiretroviral therapy, suppressed viral load and condom use: a systematic review. CMAJ. 2018 Nov 19;190(46):E1350-E1360. PubMed: https://pubmed.gov/30455270. Full-text: https://doi.org/10.1503/cmaj.180311

Li Q, Guan X, Wu P, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med 2020: PubMed: https://pubmed.gov/31995857.
Full-text: https://doi.org/10.1056/NEJMoa2001316

Li W, Zhang B, Lu J, et al. The characteristics of household transmission of COVID-19. Clin Infect Dis. 2020 Apr 17. pii: 5821281. PubMed: https://pubmed.gov/32301964. Full-text: https://doi.org/10.1093/cid/ciaa450

Little P, Read RC, Amlot R, et al. Reducing risks from coronavirus transmission in the home-the role of viral load. BMJ. 2020 May 6;369:m1728. PubMed: https://pubmed.gov/32376669. Full-text: https://doi.org/10.1136/bmj.m1728

Liu Y, Ning Z, Chen Y, et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature. 2020 Apr 27. PubMed: https://pubmed.gov/32340022 . Full-text: https://doi.org/10.1038/s41586-020-2271-3

Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM. Superspreading and the effect of individual variation on disease emergence. Nature. 2005 Nov 17;438(7066):355-9. PubMed: https://pubmed.gov/16292310. Full-text: https://doi.org/10.1038/nature04153.

McMichael TM, Currie DW, Clark S, et al. Epidemiology of Covid-19 in a Long-Term Care Facility in King County, Washington. N Engl J Med 28 March 2020.  Full-text: https://doi.org/10.1056/NEJMoa2005412.

Meselson M. Droplets and Aerosols in the Transmission of SARS-CoV-2. N Engl J Med. 2020 Apr 15. PubMed: https://pubmed.gov/32294374. Full-text: https://doi.org/10.1056/NEJMc2009324

Miller D, Martin AM, Harel N, et al. Full genome viral sequences inform patterns of SARS-CoV-2 spread into and within Israel. medRxiv 22 May 2020. Full-text: https://doi.org/10.1101/2020.05.21.20104521

Morawska L, Cao J. Airborne transmission of SARS-CoV-2: The world should face the reality. Environ Int. 2020 Apr 10;139:105730. PubMed: https://pubmed.gov/32294574. Full-text: https://doi.org/10.1016/j.envint.2020.105730

Morens DM, Fauci AS. Emerging infectious diseases: threats to human health and global stability. PLoS Pathog. 2013;9(7):e1003467. PubMed: https://pubmed.gov/23853589. Full-text: https://doi.org/10.1371/journal.ppat.1003467

Nishiura H, Linton NM, Akhmetzhanov AR. Serial interval of novel coronavirus (COVID-19) infections. Int J Infect Dis. 2020 Apr;93:284-286. PubMed: https://pubmed.gov/32145466. Full-text: https://doi.org/10.1016/j.ijid.2020.02.060

Nishiura H, Oshitani H, Kobayashi T, et al. Closed environments facilitate secondary transmission of coronavirus disease 2019 (COVID-19). medRxiv 16 April. Full-text: https://doi.org/10.1101/2020.02.28.20029272

Normile D. ‘Suppress and lift’: Hong Kong and Singapore say they have a coronavirus strategy that works. Science Mag Apr 13, 2020. Full-text https://www.sciencemag.org/news/2020/04/suppress-and-lift-hong-kong-and-singapore-say-they-have-coronavirus-strategy-works

On Kwok K, Hin Chan HH, Huang Y, et al. Inferring super-spreading from transmission clusters of COVID-19 in Hong Kong, Japan and Singapore. J Hosp Infect. 2020 May 21:S0195-6701(20)30258-9. PubMed: https://pubmed.gov/32446721. Full-text: https://doi.org/10.1016/j.jhin.2020.05.027

Ong SWX, Tan YK, Chia PY, et al. Air, Surface Environmental, and Personal Protective Equipment Contamination by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) From a Symptomatic Patient. JAMA. 2020 Mar 4. pii: 2762692. PubMed: https://pubmed.gov/32129805. Full-text: https://doi.org/10.1001/jama.2020.3227

ONS 200511. Office for National Statistics (UK). Which occupations have the highest potential exposure to the coronavirus (COVID-19)? 11 May 2020. Web page: https://bit.ly/2yF8DeJ (accessed 28 May 2020).

Ortega R, Gonzalez M, Nozari A, Canelli R. Personal Protective Equipment and Covid-19. N Engl J Med. 2020 May 19. PubMed: https://pubmed.gov/32427435. Full-text: https://doi.org/10.1056/NEJMvcm2014809. Video: https://www.nejm.org/doi/do_file/10.1056/NEJMdo005771/NEJMdo005771_download.mp4

Park SY, Kim YM, Yi S, et al. Coronavirus Disease Outbreak in Call Center, South Korea. Emerg Infect Dis. 2020 Apr 23;26(8). PubMed: https://pubmed.gov/32324530. Full-text: https://doi.org/10.3201/eid2608.201274

Peiris JS, Guan Y, Yuen KY. Severe acute respiratory syndrome. Nat Med. 2004 Dec;10(12 Suppl):S88-97. PubMed: https://pubmed.gov/15577937. Full-text: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7096017/

Perlman S, McIntosh K. Coronaviruses, Including Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS). In: Bennett JE, Dolin R, Blaser MJ (2019). Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, p. 2072. Elsevier Inc. https://expertconsult.inkling.com/read/bennett-mandell-douglas-principle-practice-infect-diseases-9e/chapter-155/coronaviruses-including-severe

Perlman S. Another Decade, Another Coronavirus. N Engl J Med. 2020 Feb 20;382(8):760-762. PubMed: https://pubmed.gov/31978944. Full-text: https://doi.org/10.1056/NEJMe2001126

Piccininni M, Rohmann JL, Foresti L, Lurani C, Kurth T. Use of all cause mortality to quantify the consequences of covid-19 in Nembro, Lombardy: descriptive study. BMJ. 2020 May 14;369:m1835. PubMed: https://pubmed.gov/32409488. Full-text: https://doi.org/10.1136/bmj.m1835

Prather KA, Wang CC, Schooley RT. Reducing transmission of SARS-CoV-2. Science. 2020 May 27:eabc6197. PubMed: https://pubmed.gov/32461212. Full-text: https://doi.org/10.1126/science.abc6197

Puelles VG, Lütgehetmann M, Lindenmeyer MT, et al. Multiorgan and Renal Tropism of SARS-CoV-2. NEJM May 13, 2020. Full-text: https://www.nejm.org/doi/full/10.1056/NEJMc2011400

Qian H, Miao T, Liu L, et al.  Indoor transmission of SARS-CoV-2. medRxiv 7 April 2020. Full-text: https://doi.org/10.1101/2020.04.04.20053058

Ratnesar-Shumate S, Williams G, Green B, et al. Simulated Sunlight Rapidly Inactivates SARS-CoV-2 on Surfaces. J Infect Dis. 2020 May 20:jiaa274. PubMed: https://pubmed.gov/32432672. Full-text: https://doi.org/10.1093/infdis/jiaa274

Rocklov J, Sjodin H, Wilder-Smith A. COVID-19 outbreak on the Diamond Princess cruise ship: estimating the epidemic potential and effectiveness of public health countermeasures. J Travel Med 2020;0: PubMed: https://pubmed.gov/32109273. Full-text: https://doi.org/10.1093/jtm/taaa030

Rothe C, Schunk M, Sothmann P, et al. Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany. N Engl J Med 2020;382:970-971. https://pubmed.gov/32003551. Full-text: https://doi.org/10.1056/NEJMc2001468

Scharfman BE, Techet AH, Bush JWM, Bourouiba L. Visualization of sneeze ejecta: steps of fluid fragmentation leading to respiratory droplets. Exp Fluids. 2016;57(2):24. PubMed: https://pubmed.gov/32214638. Full-text: https://doi.org/10.1007/s00348-015-2078-4

Schwierzeck V, Konig JC, Kuhn J, et al. First reported nosocomial outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a pediatric dialysis unit. Clin Infect Dis. 2020 Apr 27. pii: 5825509. PubMed: https://pubmed.gov/32337584. Full-text: https://doi.org/10.1093/cid/ciaa491

Scott SE, Zabel K, Collins J, et al. First Mildly Ill, Non-Hospitalized Case of Coronavirus Disease 2019 (COVID-19) Without Viral Transmission in the United States – Maricopa County, Arizona, 2020. Clin Infect Dis. 2020 Apr 2. PubMed: https://pubmed.gov/32240285. Full-text: https://doi.org/10.1093/cid/ciaa374

Sehra ST, Salciccioli JD, Wiebe DJ, Fundin S, Baker JF. Maximum Daily Temperature, Precipitation, Ultra-Violet Light and Rates of Transmission of SARS-Cov-2 in the United States. Clin Infect Dis. 2020 May 30. PubMed: https://pubmed.gov/32472936 . Full-text: https://doi.org/10.1093/cid/ciaa681

Shang J, Wan Y, Luo C, et al. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci U S A. 2020 May 6. pii: 2003138117. PubMed: https://pubmed.gov/32376634. Full-text: https://doi.org/10.1073/pnas.2003138117

Sit THC, Brackman CJ, Ip SM, et al. Infection of dogs with SARS-CoV-2. Nature. 2020 May 14. PubMed: https://pubmed.gov/32408337. Full-text: https://doi.org/10.1038/s41586-020-2334-5

Somsen GA, van Rijn C, Kooij S, Bem RA, Bonn D. Small droplet aerosols in poorly ventilated spaces and SARS-CoV-2 transmission. Lancet Respir Med. 2020 May 27:S2213-2600(20)30245-9. PubMed: https://pubmed.gov/32473123. Full-text: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7255254

Stadnytskyi V, Bax CE, Bax A, Anfinrud P. The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. PNAS 2020, May 13. Full-text: https://doi.org/10.1073/pnas.2006874117. Movies showing the experimental setup and the full 85-minute observation of speech droplet nuclei: https://doi.org/10.5281/zenodo.3770559 (accessed 15 May 2020).

Sun K, Viboud C. Impact of contact tracing on SARS-CoV-2 transmission. Lancet Infect Dis. 2020 Apr 27. pii: S1473-3099(20)30357-1. PubMed: https://pubmed.gov/32353350. Full-text: https://doi.org/10.1016/S1473-3099(20)30357-1

Tan J, Mu L, Huang J, Yu S, Chen B, Yin J. An initial investigation of the association between the SARS outbreak and weather: with the view of the environmental temperature and its variation. J Epidemiol Community Health. 2005 Mar;59(3):186-92. PubMed: https://pubmed.gov/15709076. Full-text: https://doi.org/10.1136/jech.2004.020180

Tobías A, Molina T. Is temperature reducing the transmission of COVID-19 ? Environ Res. 2020 Apr 18;186:109553. PubMed: https://pubmed.gov/32330766 . Full-text: https://doi.org/10.1016/j.envres.2020.109553

Tregoning JS, Schwarze J. Respiratory viral infections in infants: causes, clinical symptoms, virology, and immunology. Clin Microbiol Rev. 2010 Jan;23(1):74-98. PubMed: https://pubmed.gov/20065326. Full-text: https://doi.org/10.1128/CMR.00032-09

Triplett M. Evidence that higher temperatures are associated with lower incidence of COVID-19 in pandemic state, cumulative cases reported up to March 27. medRxiv preprint, 12 April 2020. Full-text: https://doi.org/10.1101/2020.04.02.20051524

Tyrrell DA, Bynoe ML. Cultivation of a novel type of common-cold virus in organ cultures. Br Med J. 1965 Jun 5;1(5448):1467-70. PubMed: https://pubmed.gov/14288084. Full-text: https://doi.org/10.1136/bmj.1.5448.1467

Uyeki TM. Human infection with highly pathogenic avian influenza A (H5N1) virus: review of clinical issues. Clin Infect Dis. 2009 Jul 15;49(2):279-90. PubMed: https://pubmed.gov/19522652. Full-text: https://doi.org/10.1086/600035

van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N Engl J Med. 2020 Mar 17. PubMed: https://pubmed.gov/32182409. Fulltext: https://doi.org/10.1056/NEJMc2004973

Verdoni L, Mazza A, Gervasoni A, et al. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study. Lancet. 2020 May 13. PubMed: https://pubmed.gov/32410760. Full-text: https://doi.org/10.1016/S0140-6736(20)31103-X

Viner RM, Whittaker E. Kawasaki-like disease: emerging complication during the COVID-19 pandemic. Lancet. 2020 May 13. PubMed: https://pubmed.gov/32410759. Full-text: https://doi.org/10.1016/S0140-6736(20)31129-6

Wang J, Tang, K, Feng K, Lv W. High Temperature and High Humidity Reduce the Transmission of COVID-19 (March 9, 2020). Available at SSRN: https://ssrn.com/PubMed=3551767 or http://dx.doi.org/10.2139/ssrn.3551767

Wang W, Xu Y, Gao R, et al. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA. 2020 Mar 11. pii: 2762997. PubMed: https://pubmed.gov/32159775. Full-text: https://doi.org/10.1001/jama.2020.3786

Wang XW, Li J, Guo T, et al. Concentration and detection of SARS coronavirus in sewage from Xiao Tang Shan Hospital and the 309th Hospital of the Chinese People´s Liberation Army. Water Sci Technol. 2005;52(8):213-21 PubMed: https://pubmed.gov/16312970. Full-text: https://iwaponline.com/wst/article-pdf/52/8/213/434290/213.pdf

Welliver R, Monto AS, Carewicz O, et al. Effectiveness of oseltamivir in preventing influenza in household contacts: a randomized controlled trial. JAMA. 2001 Feb 14;285(6):748-54. PubMed: https://pubmed.gov/11176912. Full-text: https://doi.org/10.1001/jama.285.6.748

WHO 2003. Consensus document on the epidemiology of severe acute respiratory syndrome (SARS). 2003. World Health Organization. https://apps.who.int/iris/handle/10665/70863  (accessed 12 May 2020).

WHO 2020. Modes of transmission of virus causing COVID-19: implications for IPC precaution recommendations. 29 March 2020. Web page: https://www.who.int/news-room/commentaries/detail/modes-of-transmission-of-virus-causing-covid-19-implications-for-ipc-precaution-recommendations (accessed 15 May).

Williams FMK, Freydin M, Mangino M, et al. Self-reported symptoms of covid-19 including symptoms most predictive of SARS-CoV-2 infection, are heritable. medRxiv, 27 April. Abstract: https://www.medrxiv.org/content/10.1101/2020.04.22.20072124v2

Wilson NM, Norton A, Young FP, Collins DW. Airborne transmission of severe acute respiratory syndrome coronavirus-2 to healthcare workers: a narrative review. Anaesthesia. 2020 Apr 20. PubMed: https://pubmed.gov/32311771. Full-text: https://doi.org/10.1111/anae.15093

Wolfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020 Apr 1. PubMed: https://pubmed.gov/32235945. Full-text: https://doi.org/10.1038/s41586-020-2196-x

Wu J, Huang Y, Tu C, et al. Household Transmission of SARS-CoV-2, Zhuhai, China, 2020. Clin Infect Dis. 2020 May 11. pii: 5835845. PubMed: https://pubmed.gov/32392331. Full-text: https://doi.org/10.1093/cid/ciaa557

Wu Y, Guo C, Tang L, et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol Hepatol. 2020 Mar 19. pii: S2468-1253(20)30083-2. PubMed: https://pubmed.gov/32199469. Full-text: https://doi.org/10.1016/S2468-1253(20)30083-2

Wu Y, Liu C, Dong L, et al. Coronavirus disease 2019 among pregnant Chinese women: Case series data on the safety of vaginal birth and breastfeeding. BJOG. 2020 May 5. PubMed: https://pubmed.gov/32369656. Full-text: https://doi.org/10.1111/1471-0528.16276

Yeo C, Kaushal S, Yeo D. Enteric involvement of coronaviruses: is faecal-oral transmission of SARS-CoV-2 possible? Lancet Gastroenterol Hepatol. 2020 Apr;5(4):335-337. PubMed: https://pubmed.gov/32087098. Full-text: https://doi.org/10.1016/S2468-1253(20)30048-0

Zhang J, Litvinova M, Liang Y, et al. Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China. Science 29 Apr 2020b. Full-text: https://science.sciencemag.org/content/early/2020/04/28/science.abb8001

Zhang J, Litvinova M, Wang W, et al. Evolving epidemiology and transmission dynamics of coronavirus disease 2019 outside Hubei province, China: a descriptive and modelling study. Lancet Infect Dis. 2020 Apr 2. pii: S1473-3099(20)30230-9. PubMed: https://pubmed.gov/32247326. Full-text: https://doi.org/10.1016/S1473-3099(20)30230-9

Zhang Y, Li Y, Wang L, Li M, Zhou X. Evaluating Transmission Heterogeneity and Super-Spreading Event of COVID-19 in a Metropolis of China. Int J Environ Res Public Health. 2020 May 24;17(10):E3705. PubMed: https://pubmed.gov/32456346. Full-text: https://doi.org/10.3390/ijerph17103705.

Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 2020; 382:727-733. PubMed: https://pubmed.gov/31978945
Full-text: https://doi.org/10.1056/NEJMoa2001017