Pediatrics

< < < Home

By Tim Niehues
&
Jennifer Neubert

Acknowledgements: Without the skillful help of Andrea Groth (Helios Klinikum Krefeld), the preparation of this manuscript would not have been possible. We thank cand. med. Lars Dinkelbach (Heinrich Heine Universität Düsseldorf) for critically reading the manuscript.

SARS-CoV-2 infection in children

Studies on the risk of acquiring SARS-CoV-2 infection in children in comparison to adults have shown contradicting results (Mehta 2020, Gudbjartsson 2020, Bi 2020). The exact role that children play in the transmission of SARS-CoV-2 is not yet fully understood. Population based studies performed so far indicate that children might not play a major factor in the spreading of COVID-19 (Gudbjartsson 2020). Seropravalence studies are lacking.

Children often have an asymptomatic or less severe COVID-19 disease course than adults (Zimmermann 2020, Parri 2020, Ludvigsson 2020). In this regard COVID is strikingly different from other virus-induced respiratory diseases, which can be fatal (e.g. RSV in infants). The CoV-2 pandemic causes a large collateral damage to children because they are taken out of their normal social environment (kindergartens, schools etc.), and because of parents anxiety to seek medical care despite need e.g. for vaccination (Bramer 2020) or even if their children are having an emergency (Lazzerini 2020).

Commonly circulating coronaviruses in children: tropism, incubation period and spreading

The first International Corona Virus Conference was organized by Volker Termeulen in Würzburg/Germany in 1980. At the time only one human coronavirus, HCoV2229E, was known to be associated with the common cold (Weiss 2020). Commonly circulating human coronaviruses can be isolated from 4-8% of all children with acute respiratory tract infections, which tend to be mild, unless the child is immunocompromised (Ogimi 2019). Seven coronaviruses circulate among humans: α-Coronaviruses HCoV2-229e, -HKU1; β-Coronaviruses HCoV2-NL63, -OC43; MERS-CoV, SARS-CoV and SARS-CoV-2 that have originally derived from bats (NL63, 229e, SARS-CoV), dromedary camels (229e, MERS-CoV), cattle (OC43), pangolins (SARS-CoV-2) (Zimmermann 2020). There appear to be re-infections with the earlier described common COV despite the fact that most individuals seroconvert to human coronaviruses. In many children there are co-infections with other viruses such as Adeno-, Boca-, Rhino-, RSV-, Influenza- or Parainfluenza virus. There seems to be a cyclic pattern with seasonal outbreaks between December and May or March to November in the southern hemisphere.

A characteristic of the single-strand RNA coronaviruses is the capability of rapid mutation and recombination leading to novel coronaviruses that can spread from animals to humans. They have caused epidemics leading to significant case fatality rates (10% in SARS-CoV, Hong Kong 2002; more than 30% in MERS-CoV, Saudi Arabia 2012). Because of the high case fatality rate, both SARS-COV and MERS-COV have a low potential for long-term sustained community transmission. Accordingly, no human SARS-CoV infections have been reported since July 2003.

It is estimated that in SARS-CoV-2 one person infects 2-3 other persons. In clusters (e.g. nosocomial outbreaks) this number might be much higher. In both SARS-CoV and MERS-CoV, super-spreading events with one individual infecting up to 22 (SARS) or even 30 individuals (MERS) have been reported, especially in nosocomial outbreaks. In SARS-CoV a total of 41 children were reported with no deaths. Similarly, in MERS-CoV only 38 children were reported in two studies, with two deaths (Zimmermann 2020).

Epidemiology of COVID-19 in children

On April 6 the US CDC reported 2572 (1.7%) children under 18 years among 149,082 reported cases from 12 February to 2 April 2020. The availability of data was extremely limited (less than 10% available on symptoms, 13% on underlying conditions, 33% on whether children were hospitalized or not). Three deaths were reported to the CDC but no details were given. The median age was 11 and they were 57% males. 15 children were admitted to an ICU (≤2%). Children <1 year accounted for the highest percentage (15-62%) of hospitalization (CDC 2020). The Chinese CDC report (Dong 2020) comprises 2,143 pediatric patients from January 16 to February 8 2020. Only 731 children (34.1%) were laboratory confirmed cases. The median age was 7 years with 56.6% boys, less than 5% were classified as severe and less than 1% as critical. One Chinese 10 month-old child who had been infected with CoV-2 was reported to have died with intussuception and multi-organ failure (Lu X 2020). The Korean Center for Disease Control and Prevention reported on 20 March that 6.3% of all COVID-19 cases were children under 19 years of age; again, the children had a mild form of the disease (Korean Center for Disease Control and Prevention. Press releases, https://www.cdc.go.kr). Italian data published on 18 March showed that only 1.2% of the 22,512 Italian cases with COVID-19 were children; no deaths were reported in this and in the Spanish cohort from Madrid (2 March to 16 March) (Livingstone 2020, Tagarro 2020).

The European Surveillance System (TESSy) collects data from EU/EEA countries and the UK on laboratory-confirmed cases of COVID-19. Out of 576,024 laboratory confirmed COVID-19 cases 0.7% were 0-4 years, 0.6% 5-9 years, 0.9% 10-14 years (https://covid19-surveillance-report.ecdc.europa.eu).

Natural course and risk factors for complications

The incubation period is believed to be 3-7 days (range 1-14 days) (She 2020), the clinical onset 5-8 days after infection with the virus. Children often have an asymptomatic or less severe COVID-19 disease course than adults (Zimmermann P 2020, Parri 2020). Among a total of 100 children with SARS-CoV-2 from Italy, 21% were asymptomatic, 58% had mild disease, 19% had moderate disease, 1% had severe disease, and 1% were in critical condition (Parri 2020).

At 10 days after onset of symptoms hyperinflammation may set in and cause a more severe and potentially fatal disease, especially in high risk groups. The clinical manifestation is believed to last for 1-2 weeks, longer in complicated cases. Due to the paucity of data it is as yet unclear which group of children may be at a higher risk for development of complications, e.g. children with underlying chronic pulmonary or cardiac disease, severe neurologic deficits, immunosuppressed or critically ill children etc. Analogous to influenza there might be genetic susceptibility in some children (Clohisey 2019). Interestingly, in a flash survey from 25 countries with 10,000 children with cancer at risk and 200 tested, only 9 were found to be CoV-2 positive. They were asymptomatic or had mild disease (Hrusak 2020).

In the European surveillance System (TESSy) deaths among children aged below 15 years are rare, 4 out of 44,695 (0.009%) were reported in the TESSy. The rate of hospitalization was higher in children under the age of five especially in infants compared to persons aged 5-29. It is believed that the threshold for admission is lower in young children. A severe course requiring admission to ICU was not more likely in the younger children. The likelihood of being hospitalised was higher when children had an underlying condition, a severe course was rare (https://covid19-surveillance-report.ecdc.europa.eu).

In a cross-sectional study including 48 children with COVID-19 (median age 13 years; admitted to 46 North American pediatric ICUs between March 14 and April 3, 2020), forty patients (83%) had significant preexisting comorbidities and 18 (38%) required invasive ventilation. Targeted therapies were used in 28 patients (61%, mainly HCQ). Two patients (4%) died and 15 (31%) were still hospitalized, with 3 still requiring ventilatory support and 1 receiving ECMO (Shekerdemian 2020).

In an observational retrospective cohort study that included 177 children and young adults with clinical symptoms and laboratory confirmed SARS-CoV-2 infection treated between March 15 and April 30, 2020 at the Children’s National Hospital in Washington, 44 were hospitalized and 9 were critically ill. Of these, 6/9 were adolescents and young adults > 15 years of age. Although asthma was the most prevalent underlying condition overall, it was not more common among patients with severe disease (DeBiasi 2020).

As of 11 May, 74 centers in Germany reported 137 pediatric hospital admissions, 15% were admitted to the ICU. 55.6% of the patients admitted to the ICU had an underlying disease, mostly pulmonary or cardiac diseases (www.dgpi.de).

Pathophysiology and immunopathology

It is unclear why COVID-19 in children is associated with a less severe disease course.

The tissue expression pattern of the receptor for CoV-2 angiotensin converting enzyme (ACE2) and the transmembrane serine protease TMPRSS2 (essential for CoV-2 cell entry) as well as the tissue tropism of CoV-2 in childhood are unknown. ACE2 is expressed on cells of the airways, the lungs, mucosal cells (lids, eyelids, nasal cavities), intestines and on immune cells (monocytes, lymphocytes, neutrophils) (Molloy 2020, reviewed in Brodin 2020). It needs to be clarified whether there is neurotropism (e.g. affecting the developing brain of newborns).

The main target of CoV-2 is the respiratory tract. As respiratory infections are extremely common in children it is to be expected that there are other viruses present in the respiratory tract of young children concomitantly with the coronavirus, which may limit its growth and the number of CoV-2 copies in the respiratory tract of children. Systematic viral load measurements in the respiratory tract of different viruses in children are underway. Key to the later immunopathologic stages of COVID-19 pneumonia is the macrophage activation syndrome (MAS)-like hyperinflammatory phase with a cytokine storm and acute respiratory distress syndrome ARDS, usually within 10-12 days after symptom onset. In general, children are not less prone to develop ARDS during respiratory tract infections than adults. In the H1N1 flu pandemic in 2009, being under the age of 1 year was a significant risk factor for developing a severe form of the infection and ARDS (Bautista 2010). Why ARDS is less common in children compared to adults with COVID-19 is unclear.

Regarding childhood immunity, an explanation for the milder disease course in children could be age-related differences in immune responses to CoV-2 between adults and children. To what extent previous infections with non-SARS coronaviruses may have led to protective cross-reactive antibodies is unclear.

In the innate immune response damaged lung cells induce inflammation by macrophages and granulocytes. Based on influenza animal models it has been proposed that BCG vaccination (for tuberculosis prevention, done in the first week of life in some countries) may enhance non-specific innate immunity in children to infections like COVID-19 (so-called trained immunity) (Moorlag 2019). A search of the BCG World Atlas and correlation with data of COVID-19 cases and death per country found that countries without universal policies of BCG vaccination (Italy, the Netherlands, USA) have been more severely affected compared to countries with universal and long-standing BCG policies and that BCG vaccination also reduced the number of reported COVID-19 cases in a country (Miller 2020, Hauer 2020). Recent data from a large population-based study did not show decreased infection rates in Israeli adults aged 35 to 41 years who were BCG-vaccinated in childhood as compared to non-BCG-vaccinated. Data on the effect of BCG vaccination on COVID-19 disease severity are unavailable (Hamiel 2020).

In the adaptive response cytotoxic T cells play an important role in regulating responses to viral infections and control of viral replication. Children could benefit from the fact that the cytotoxic effector function of CD8 T cells in viral infection in children may be less detrimental compared to adults. Immune dysregulation with exhaustion of T cells has been reported in adults with COVID-19 infection. Regarding humoral immunity IgG maternal antibodies are actively transferred to the child via placenta and/or IgA via breast milk. They may not include anti CoV-2 antibodies, if the mother is naïve to CoV-2 or infected late in pregnancy. In mothers with COVID-19 pneumonia serum and throat swabs of their newborns were negative for CoV-2 but virus-specific IgG antibodies were detected (Zeng H 2020). Thus, neonates may benefit from placental transmission of virus-specific antibodies from pre-exposed mothers. As shown in SARS CoV-1 it is likely that in SARS-CoV-2 a newly infected child will mount a significant humoral response with neutralizing IgM (within days) and IgG antibodies (within 1-3 weeks) to one of the immunodominant epitopes, e.g. the crown-like spike proteins giving the coronaviruses their name.

Data regarding IgG and IgM seroprevalence and quality of the immune response in children are lacking. No human reinfections with CoV-2 have been demonstrated yet but overall it is not clear whether children mount a durable memory immune response to CoV-2.

Transmission

Contraction of COVID-19 in a pregnant woman may have an impact on fetal outcome, namely fetal distress, potential preterm birth or respiratory distress if the mother gets very sick. As of yet there is no evidence that SARS-CoV-2 can be transmitted vertically from mother to child. Amniotic fluid, cord blood, neonatal throat swabs all tested negative in a small cohort (Chen 2020). Schwartz reviewed 5 publications from China and was able to identify 38 pregnant women with 39 offspring among whom 30 were tested for COVID-19 and all of them were negative (Schwartz 2020). Transmission by breastfeeding has not yet been reported and there are no case reports of detection of CoV-2 in breast milk.

SARS-CoV-2 in children is transmitted through family contacts and mainly through respiratory droplets (Garazzino 2020). In a study from France, child-to-child and child-to-adult transmission seems to be uncommon (Danis 2019). Prolonged exposure to high concentrations of aerosols may facilitate transmission (She 2020).

SARS-CoV-2 may also be transmitted through the digestive tract. ACE2 is also found in upper esophageal and epithelial cells as well as intestinal epithelial cells in the ileum and colon (She 2020). SARS-CoV-2 RNA can be detected in the feces of patients (Holshue 2020). Cai revealed that viral RNA is detected from feces of children at a high rate (and can be excreted for as long as 2-4 weeks) (Cai 2020). However, direct evidence of a fecal-to-oral transmission has not yet been documented.

Diagnosis and classification

Testing for the virus is only necessary in clinically suspect children. If the result is initially negative, repeat nasopharyngeal or throat swab-testing of upper respiratory tract samples or testing of lower respiratory tract samples should be done. Sampling of the lower respiratory tract (induced sputum or bronchoalveolar lavage) is more sensitive (Han 2020). This is not always possible in critically ill patients and in young children.

Diagnosis is usually made by real-time polymerase chain reaction RT-PCR on respiratory secretions. For SARS-CoV, MERS-CoV and SARS-CoV-2, higher viral loads have been detected in samples from lower respiratory tract compared with upper respiratory tract.

In some patients, SARS-CoV-2 RNA is negative in respiratory samples while stool samples are still positive indicating that the viral gastrointestinal infection can last even after viral clearance in the respiratory tract. (Xiao 2020). Fecal testing may thus be of value in diagnosing CoVID-19 in these patients.

As in other viral infections, a CoV-2 IgM and IgG seroconversion will appear in days (IgM) to 1-3 weeks (IgG) after infection and may or may not indicate protective immunity (still to be determined). Interestingly, asymptomatic seroconversion has been hypothesized in a very small series of health workers (mean age 40 years) exposed to a child with COVID-19 in a pediatric dialysis unit (Hains 2020).

Serology may be useful in patients with clinical symptoms highly suggestive of SARS-CoV-2 who are RNA negative, i.e in children with pediatric inflammatory multisystem syndrome temporarily associated with SARS-CoV-2 (PIMS-TS). In case serology indicates protective immunity, this will be extremely important from a public health perspective, e.g. it will allow for strategic staffing in medical care and for the assessment of CoV-2 epidemiology (herd immunity).

 

Table 1. COVID classification in children (Shen 2020)
1 Asymptomatic without any clinical symptoms
2 Mild fever, fatigue, myalgia and symptoms of acute respiratory tract infections,
3 Moderate pneumonia, fever and cough, productive cough, wheezing but no hypoxemia
4 Severe fever, cough, tachypnea, oxygen saturation less than 92%, somnolence
5 Critical quick progress to acute respiratory distress syndrome ARDS or respiratory failure

 

Laboratory and radiology findings

Laboratory and/or radiology studies in outpatient children who have mild disease are not indicated. Upon admission to the hospital the white blood cell count is usually normal. In a minority of children decreased lymphocyte counts have been documented. In contrast, adults (with hyperinflammation and cytokine release syndrome) often have an increase in neutrophils and lymphopenia. The inflammation parameters C-reactive protein and procalcitonin can be slightly elevated or normal while there are elevated liver enzymes, creatine kinase CK-MB and D-dimers in some patients. LDH appears to be elevated in severe cases and can be used to monitor severe disease.

A chest X-ray should only be done in children with moderate or more severe disease as CT scans mean a very high radiation exposure for the child and should only be done in complicated or high-risk cases. In the beginning of the pandemic in China, children all received CT scans even when they were asymptomatic and oligosymptomatic; surprisingly, they displayed very severe changes. On chest radiography there are bilateral patchy airspace consolidations and so-called ground-glass opacities. CT scans were more impressive than chest x-ray examinations. In 20 children with CT, 16 (80%) had some abnormalities (Xia 2020).

Symptoms and signs: Acute infection

Children and adolescents

The clinical presentation of the disease appears somewhat similar to influenza. In the largest clinical trial of 171 children from Wuhan fever was reported in 41% (71 of 171), cough in over 50% (83 of 171), tachypnea in 28% (49 of 171). In 27 of the patients there were no symptoms at all (15.8%). At initial presentation very few children required oxygen supplementation (4 of 171, 2.3%). Other symptoms like diarrhea, fatigue, runny nose and vomiting were observed only in less than 10% of the children (Lu 2020). In the case series from Zhejiang as many as 10 out of 36 patients (28%) had no symptoms at all. None of the children had an oxygen saturation below 92% (Qiu 2020).

Neonates and infants

Zeng reports 33 newborns born to mothers with COVID-19 in Wuhan. Three of the 33 infants (9%) presented with early-onset SARS-CoV-2 infection. In 2 of the 3 neonates there were radiological signs of pneumonia. In one child disseminated intravascular coagulation was described but eventually all children had stable vital signs three weeks after the infection when the report was published (26 March 2020) (Zeng L 020). In a second cohort, 9 infants aged 1 month to 9 months were described without any severe complications (Wei 2020). Whether there may be complications of COVID-19 in newborns and infants long-term cannot be judged at this stage of the pandemic. At present it is not recommended to separate healthy newborns from mothers with suspicion of COVID-19 (CDC-2 2020). Clearly a preterm or newborn that has been exposed to CoV-2 needs to be closely monitored by the hospital and/or the primary care pediatrician. If there are signs of COVID (e.g. poor feeding, unstable temperature, tachy/dyspnea) it needs to be hospitalized and tested and lab examinations and chest x-ray to be done. Testing for CoV-2 is not useful before day 5 because of the incubation period. There needs to be a strict hygiene as much as possible in this mother-child setting.

Pediatric inflammatory multisystem syndrome temporarily associated with SARS-CoV-2 (PIMS-TS) (or synonym Multisystem Inflammatory Syndrome in Children (MIS-C) or Kawasaki-like Disease

In April 2020 clinicians from the UK, France, Italy, Spain and the US reported on children with a severe inflammatory syndrome with Kawasaki-like features, some of whom had tested positive for CoV-2, while others had not. Prior to this, Jones had described the case of a six-month-old baby girl with fever, rash and swelling characteristic of a rare pediatric inflammatory condition, Kawasaki syndrome (Jones 2020).

Eight patients from the UK and 10 patients from Bergamo in Italy with features of Kawasaki disease have been published including one death in a 14-year-old boy in the UK during the SARS-CoV-2 epidemic (Riphagen 2020, Verdoni 2020). In Bergamo, the region with the highest infection rate in Italy, a 30-fold increased incidence of Kawasaki disease has been reported following the SARS-CoV-2 epidemic (Verdoni 2020).

Currently, the pathophysiological overlap between COVID-19 associated inflammation and Kawasaki disease is not yet clear, their features are summarized in Table 2. asdf

 

Table 2. Features of Kawasaki Disease and pediatric inflammatory multisystem syndrome temporarily associated with SARS-CoV-2
  Kawasaki (Hedrich 2017, ECDC 2020) (previously called mucocutaneous lymph -node syndrome) PIMS-TS (pediatric inflammatory multisystem syndrome temporarily associated with SARS-CoV-2 or MIS-C (multisystem inflammatory syndrome in children) (Verdoni 2020; Riphagen 2020, https://covid19-surveillance-report.ecdc.europa.eu/)

“Kawasaki-like disease”

Epidemiology Incidence 5–19/100,000 annually < 5 years of age (EU, US), in north-east Asia higher; seasonal increase in winter/spring, geographic wave-like spread of illness during epidemics (Rowley 2018)
Incidence unknown.

230 suspected cases temporally associated with COVID-19 reported to ECDC by May 15th (EU/EEA, UK). More common in afro-caribbean descent, obesity? (Riphagen 2020)

Age, sex >90% < 5 years of age, more males 5-15 years of age, sex distribution unclear
Etiology Unknown, hypothesis: infection with common pathogens, e.g. bacteria, fungi and viruses which cause immune-mediated damage (Dietz 2017) (Jordan-Villegas 2010, Kim 2012, Turnier 2015). Genetic factors (increased frequency in Asia and among family members of an index case)
Unknown, no working hypothesis yet. Hyperinflammation/shock associates with immune response to SARS-CoV-2. In CoV-1 antibody-dependent enhancement (ADE): presence of antibodies can be detrimental, enable the virus to spread (demonstrated in SARS-CoV)
Case definition

 

fever ≥5 days, combined with at least 4 of the 5 following items

1.Bilateral bulbar conjunctival injection

2. Oral mucous membrane changes, including injected or fissured lips, injected pharynx, or strawberry tongue

3. Peripheral extremity changes, including erythema of palms or soles, edema of hands or feet (acute phase) or periungual desquamation (convalescent phase)

4. Polymorphous rash

5. Cervical lymphadenopathy

(McCrindle 2017)

 

Children suspected of having KD who do not fulfill diagnostic criteria may have incomplete or atypical KD (Cimaz 2009)

1. Persistent fever, inflammation (neutrophilia, elevated CRP and lymphopenia) and single or multi-organ dysfunction (shock, cardiac, respiratory, renal, gastrointestinal or neurological disorder) with other additional clinical, laboratory or imagining and ECG features. Children fulfilling full or partial criteria for Kawasaki disease may be included

2. Exclusion of any other microbial cause, including bacterial sepsis, staphylococcal or streptococcal shock syndromes, infections associated with myocarditis such as enterovirus

3. SARS-CoV-2 PCR testing positive or negative. (Royal College of Paediatrics and Child Health)

 

CoV-2 status in most cases

 

CoV-2 Ag (PCR); Abs (Elisa) negative CoV-2 Ag (PCR) negative and Abs (Elisa) positive
Typical Lab Marked Elevation of acute-phase reactants (eg, C-reactive protein [CRP] or erythrocyte sedimentation rate [ESR])

 

Thrombocytosis (generally after day 7 of illness

Leukocytosis, left-shift (increased immature neutrophils)

Marked elevation of acute phase reactants CRP, ESR

Thrombocytopenia

Leucopenia

Lymphopenia

Hyperferritinemia

 

Elevated myocarditis markers Troponin, pro-BNP

Acute Complications

 

Kawasaki disease shock syndrome (KSSS) (rare), features of macrophage activation syndrom, MAS (rare), coronary artery abnormalities, mitral regurgitation, prolonged myocardial dysfunction, disseminated intravascular coagulation (Kanegaye  2009)

Gastrointestinal complications (Ileitis, vomiting, abdominal pain) rare

Shock (common), features of macrophage activation syndrome (common), myocardial involvement evidenced by markedly elevated cardiac enzymes (common), myocardial infarction, aneurysms, disseminated intravascular coagulation

Gastrointestinal complications (Ileitis, vomiting, abdominal pain) are very common

Long term

Complications

Artery abnormalities (aneurysms of mid-sized arteries, giant coronary artery aneurysms CAAs) Unknown; aneurysms?
Management High-dose intravenous immunoglobulin (IVIG) (2g/kg) first-line treatment; effective in reducing the risk of coronary artery disease when administered within 10 days of onset of fever. In addition, acetylsalicylic acid, glucocorticoids and anti-TNF monoclonal antibodies have been used

 

So far, most patients published were treated with high dose IVIG, glucocorticoids, ASS (Verdoni 2020, Riphagen 2020)

IVIG resistance requiring adjunctive steroid treatment is common (Verdoni 2020,)

Management on the pediatric intensive care unit is often necessary: progression to vasoplegic shock is common

Hemodynamic support, treatment with noradrenaline and milrinone, mechanical ventilation is often required (Riphagen 2020)

Prognosis Self-limited vasculitis lasting for an average of 12 days without therapy. Without timely treatment, CAAs, and in particular aneurysms, can occur in up to 25% of children Overall prognosis not yet clear

More severe course than KD

Potentially fatal in individual cases

 

Management

Infection control

Early identification of COVID-19 and quarantine of contacts is imperative. In the in- and out-patient setting it is advised to separate children who have infectious diseases from healthy non-infectious children. Nosocomial outbreaks have played a role in the clustering of COVID-19. Thus it is advised to admit children with COVID-19 to the hospital only if an experienced pediatrician feels it is medically necessary (e.g. tachypnea, dyspnea, oxygen levels below 92%). In the hospital the child with COVID-19 or suspicion of COVID-19 needs to be isolated in a single room or admitted to a COVID-19-only ward in which COVID-19 exposed medical personnel maintains distance as well (e.g. no shifts on other wards). The presence of one parent is not negotiable in the care of the sick child both for emotional reasons as well as for help in nursing of the child.

During the peak phase of the COVID-19 epidemic, precautions in the outpatient and hospital setting include entrance control, strict hand and respiratory hygiene, daily cleaning and disinfection of the environment, and provision of protection (gloves, mask, goggles) for all medical staff when taking care of a COVID-19 or a suspected COVID-19 case (Wang 2020). In neonatal intensive care units (NICU), negative pressure rooms and filtering of exhaust would be ideal (Lu Q 2020). Respirators with closed circuit and filter systems should be used. Aerosol generating procedures, e.g. intubation, bronchoscopy, humidified inhalations/nebulization should be avoided as much as possible.

Supportive treatment (respiratory support, bronchodilatation therapy, fever, superinfection, psychosocial support)

Having the child sitting in an upright position will be helpful for breathing. It might be useful to have physiotherapy. Insufflation of oxygen via nasal cannula will be important to children as it will increase lung ventilation and perfusion. In neonates, high flow nasal cannula (HFNC) has been utilized widely due to its superiority over other non-invasive respiratory support techniques.

The clinical use and safety of inhaling different substances in COVID-19 is unclear. In other common obstructive and infectious childhood lung diseases, e.g. in bronchiolitis, the American Academy of Pediatrics is now recommending against the use of bronchodilators (Dunn 2020). Regarding the inhalation of steroids as part of maintenance therapy for asthma bronchiale there is no evidence to discontinue this treatment in children with COVID-19.

There is a large controversy over the extent of antipyretics usage in children. Still, in a child with COVID-19 who is clinically affected by high-degree fever, paracetamol or ibuprofen may be useful. There is no restriction despite initial WHO warnings of using ibuprofen, there is no evidence that the use of paracetamol or ibuprofen is harmful in COVID-19 in children (Day 2020).

The differentiation between CoV-2-induced viral pneumonia and bacterial superinfection is difficult unless there is clear evidence from culture results or typical radiological findings. Bacterial superinfection will be treated according the international and national guidelines (Mathur 2018).

The virus outbreak brings psychological stress to the parents and family as well as medical staff; therefore, social workers and psychologists should be involved when available.

Treatment of respiratory failure

The treatment of pediatric acute respiratory distress syndrome (pARDS) is reviewed elsewhere (Allareddy 2019). For neonates with pARDS high-dose pulmonary surfactant replacement, nitric oxide inhalation, and high-frequency oscillatory ventilation might be effective. In critically ill neonates, continuous renal replacement and extracorporeal membrane oxygenation need to be implemented if necessary.

COVID-19-specific drug treatment

As of yet there are no data from controlled clinical trials and thus there is currently no high-quality evidence available to support the use of any medication to treat COVID-19. The drugs listed below are repurposed drugs and there is limited or almost no pediatric experience. In the case of a severe or critically ill child with COVID the pediatrician has to make a decision whether to try a drug or not. If initiation of a drug treatment is decided, children should be included into clinical trials (https://www.clinicaltrialsregister.eu) if anyhow possible. However, there are only very few, if any, studies open for recruitment in children.

When to treat with drugs

Under the lead of the German Society for Pediatric Infectiology (DGPI) an expert panel has proposed a consensus on when to start antiviral or immunomodulatory treatment in children (Table 3, https://dgpi.de/stellungnahme-medikamentoese-behandlung-von-kindern-mit-covid-19/).

A panel of pediatric infectious diseases physicians and pharmacists from North American institutions published an initial guidance on use of antivirals for children with SARS. It is advised to limit antiviral therapy to children in whom the possibility for benefit outweighs risk of toxicity and remdesvir is the preferred agent (Chiotos 2020).

Inhibitors of viral RNA synthesis

Remdesivir (GS-5734) is available as 150 mg vials. Child dosing is

  • <40 kg: 5 mg/kg iv loading dose, then 2.5 mg/kg iv QD for 9 days
  • ≥40 kg: 200 mg loading dose, then 100 mg QD for 9 days

Remdesivir is an adenosine nucleotide analogue with broad-spectrum antiviral activity against various RNA viruses. The compound undergoes a metabolic mechanism, activating nucleoside triphosphate metabolites for inhibiting viral RNA polymerases. Remdesivir has demonstrated in vitro and in vivo activity in animal models against MERS and SARS-CoV. Remdesivir showed good tolerability and a potential positive effect in regard to decrease of the viral load and mortality in Ebola in Congo in 2018 (Mulangu 2019). In Europe this drug has rarely been used in children so one should be extremely careful. It can be obtained through compassionate use programs (https://rdvcu.gilead.com)

 

Table 3. Consensus on antiviral or immunomodulatory treatment in children
Disease severity in child Intervention
Mild or moderate disease
pCAP, upper respiratory tract infection, no need for oxygen
Treat symptomatically.
No need for antiviral or immunomodulatory treatment
More severe disease and risk groups*
pCAP, need for oxygen
Treat symptomatically
consider antiviral therapy
Critically ill, admitted to ICU Treat symptomatically.
Consider antiviral therapy.
Consider immunomodulatory treatment
Secondary HLH (hemophagocytic lymphohistiocytosis) Treat with immunomodulatory or immunosuppressive drugs

* Congenital heart disease, immunosuppression, inborn/acquired immunodeficiencies, cystic fibrosis, chronic lung disease, chronic neurological/kidney/liver disease, diabetes/metabolic disease

 

Lopinavir/r (LPV/r, Kaletra®) is a co-formulation of lopinavir and ritonavir, in which ritonavir acts as a pharmacokinetic enhancer (booster). LPV/r is an HIV-1 protease inhibitor successfully used in HIV-infected children as part of highly active antiretroviral combination therapy (PENTA Group, 2015). In the SARS epidemics, LPV/r had been recommended as a treatment. A recent study in adult COVID-19 patients did not show an effect regarding the primary end point in a controlled clinical trial. Despite the fact that there is a large experience with LPV/r in HIV, it is not advised to use it in children with COVID-19 as it does not appear to be effective at all (see Treatment chapter, page 233).

Inhibitors of viral entry

Hydroxychloroquine (HCQ, Quensyl®), Chloroquine (CQ, Resochin junior®, Resochin®) The experience among pediatricians with HCQ/CQ (except pediatriciancs working with malaria) is very limited. Authorities in the US are now warning about a widespread use of HCQ/CQ in COVID-19 (https://mailchi.mp/clintox/aact-acmt-aapcc-joint-statement). It is not advised to use HCQ or CQ in children with COVID as neither drug appears to be effective at all (see chapter Treatment, page 233).

Immunomodulatory drug treatment

The rational for immunomodulation in COVID-19 patients comes from a high expression of pro-inflammatory cytokines (Interleukin-1 (IL1) and interleukin-6 (IL6)), chemokines (“cytokine storm”) and the consumption of regulatory T cells resulting in damage of the lung tissue as reported in patients with a poor outcome. Blocking IL-1 or IL-6 can be successful in children with (auto) inflammatory disease (reviewed in Niehues 2019). However, both interleukins are also key to the physiological immune response and severe side effects of immunomodulators have been reported. In adults with COVID-19, blocking interleukin-1/6 might be helpful (see the Treatment chapter). In the rare situation that the condition of the child deteriorates due to hyperinflammation and that they are resistant to other therapies, tocilizumab or anakinra may be an option.

Steroids (e.g. prednisone, prednisolone) are available as oral solution, tablets or different vials for intravenous application. Dosage in children is 0.5 to 1 mg/kg i.v. or oral BID. Short term use of steroids has few adverse events. Administration of steroids will affect inflammation by inhibiting the transcription of some of the pro-inflammatory cytokines and various other effects. The use of corticosteroids in children and adults with CoV-induced ARDS is controversial (Lee 2004, Arabi 2018, Russell 2020). The corticosteroid-induced decrease of antiviral immunity (e.g. to eliminate CoV-2 viruses) might be disadvantageous in patients with COVID-19. The use of low-dose hydrocortisone may be of advantage in adults with ARDS, whereas its use is controversial in pediatric ARDS. Most patients with pediatric inflammatory multisystem syndrome associated with SARS-CoV-2 (PIMS-TS) published so far were treated with high dose IVIG and methylprednisolone (Verdoni 2020, Riphagen 2020). In these patients, features of macrophage activation syndrome and IVIG resistance were common, requiring adjunctive steroid treatment (Verdoni 2020).

Tocilizumab (Roactemra®) is available in 80/200/400 mg vials (20 mg/ml). Dosing is

  • <30 kg: 12 mg/kg iv QD, sometimes repeated after 8 hrs
  • ≥30 kg: 8mg/kg iv QD iv (max. 800 mg)

Adverse events (deriving largely from long term use in chronic inflammatory diseases and use in combination with other immunomodulatory drugs): severe bacterial or opportunistic infections, immune dysregulation (anaphylactic reaction, fatal macrophage activation), psoriasis, vasculitis, pneumothorax, fatal pulmonary hypertension, heart failure, gastrointestinal bleeding, diverticulitis, gastrointestinal perforation (reviewed in Niehues 2019).

Anakinra (Kineret®) is available as 100 mg syringes (stored at 4-8° C). Dosing is 2-4 mg/kg s.c. QD daily as long as hyperinflammation persists. Thereafter, dose reduction by 10-30% per day. Adverse events (deriving largely from long-term use in chronic inflammatory diseases and use in combination with other immunomodulatory drugs): severe bacterial or opportunistic Infections, fatal myocarditis, immune dysregulation, pneumonitis, colitis, hepatitis, endocrinopathies, nephritis, dermatitis, encephalitis, psoriasis, vitiligo, neutropenia (reviewed in Niehues 2019).

Immunotherapy

Engineering monoclonal antibodies against the CoV spike proteins or against its receptor ACE2 or specific neutralizing antibodies against CoV-2 present in convalescent plasma may provide protection but are not generally available yet.

Interferon α has been inhaled by children with COVID-19 in the original cohorts but there are no data on its effect (Qiu 2020). Type-1 interferons (e.g. interferon-a) are central to antiviral immunity. When coronaviruses (or other viruses) invade the host, viral nucleic acid activates interferon-regulating factors like IRF3 and IRF7 which promote the synthesis of type I interferons (IFNs).

PIMS / MIS-C / Kawasaki-like disease

Based on the information published so far, most patients were treated with high dose intravenous Immunglobulin (see Table 2) and corticosteroids (Verdoni 2020). More data are needed to determine the optimal treatment strategies for patients with MIS-C.

DOI: Tim Niehues has received authorship fees from uptodate.com (Wellesley, Massachusetts, USA) and reimbursement of travel expenses during consultancy work for the European Medicines Agency (EMA), steering committees of the PENTA Paediatric European Network for Treatment of AIDS (Padua, Italy), the Juvenile Inflammatory Cohort (JIR) (Lausanne, Switzerland), and, until 2017, the FIND-ID Initiative (supported by the Plasma Protein Therapeutics Association [PPTA] [Brussels, Belgium]).

References

Allareddy V, Cheifetz IM. Clinical trials and future directions in pediatric acute respiratory distress syndrome. Ann Transl Med. 2019 Oct;7(19):514. PubMed: https://pubmed.gov/31728367. Full-text: https://doi.org/10.21037/atm.2019.09.14

Arabi YM, Mandourah Y, Al-Hameed F, et al. Corticosteroid Therapy for Critically Ill Patients with Middle East Respiratory Syndrome. Am J Respir Crit Care Med. 2018 Mar 15;197(6):757-767. PubMed: https://pubmed.gov/29161116. Full-text: https://doi.org/10.1164/rccm.201706-1172OC

Bautista E, Chotpitayasunondh T, Gao Z, et al. Clinical aspects of pandemic 2009 influenza A (H1N1) virus infection. N Engl J Med. 2010 May 6;362(18):1708-19. PubMed: https://pubmed.gov/20445182. Full-text: https://doi.org/10.1056/NEJMra1000449

Bi Q, Wu Y, Mei S, et al. Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study. Lancet Infect Dis. 2020 Apr 27:S1473-3099(20)30287-5. PubMed: https://pubmed.gov/32353347. Full-text: https://doi.org/10.1016/S1473-3099(20)30287-5

Bramer CA, Kimmins LM, Swanson R, et al. Decline in Child Vaccination Coverage During the COVID-19 Pandemic – Michigan Care Improvement Registry, May 2016-May 2020. MMWR Morb Mortal Wkly Rep. 2020 May 22;69(20):630-631. PubMed: https://pubmed.gov/32437340. Full-text: https://doi.org/10.15585/mmwr.mm6920e1.

Brodin P. Why is COVID-19 so mild in children? Acta Paediatr. 2020 Mar 25. PubMed: https://pubmed.gov/32212348. Full-text: https://doi.org/10.1111/apa.15271

Cai J, Xu J, Lin D, et al. A Case Series of children with 2019 novel coronavirus infection: clinical and epidemiological features. Clin Infect Dis. 2020 Feb 28. pii: 5766430. PubMed: https://pubmed.gov/32112072. Full-text: https://doi.org/10.1093/cid/ciaa198

CDC COVID-19 Response Team. Coronavirus Disease 2019 in Children – United States, February 12-April 2, 2020. MMWR Morb Mortal Wkly Rep. 2020 Apr 10;69(14):422-426. PubMed: https://pubmed.gov/32271728. Full-text: https://doi.org/10.15585/mmwr.mm6914e4

CDC (2). Considerations for Inpatient Obstetric Healthcare Settings. April 2020. Full-text: https://www.cdc.gov/coronavirus/2019-ncov/hcp/inpatient-obstetric-healthcare-guidance.html. Accessed 20 April 2020.

Chen H, Guo J, Wang C, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet. 2020 Mar 7;395(10226):809-815. PubMed: https://pubmed.gov/32151335. Full-text: https://doi.org/10.1016/S0140-6736(20)30360-3

Chiotos K, Hayes M, Kimberlin DW, et al. Multicenter initial guidance on use of antivirals for children with COVID-19/SARS-CoV-2. J Pediatric Infect Dis Soc. 2020 Apr 22:piaa045. PubMed: https://pubmed.gov/32318706. Full-text: https://doi.org/10.1093/jpids/piaa045

Cimaz R, Sundel R. Atypical and incomplete Kawasaki disease. Best Pract Res Clin Rheumatol. 2009 Oct;23(5):689-97. PubMed: https://pubmed.gov/19853833. Full-text: https://doi.org/10.1016/j.berh.2009.08.010.

Clohisey S, Baillie JK. Host susceptibility to severe influenza A virus infection. Crit Care. 2019 Sep 5;23(1):303. PubMed: https://pubmed.gov/31488196. Full-text: https://doi.org/10.1186/s13054-019-2566-7

Danis K Cluster of coronavirus disease 2019 (Covid-19) in the French Alps, Clin Infect Dis.Danis K, Epaulard O, Bénet T, et al. Cluster of coronavirus disease 2019 (Covid-19) in the French Alps, 2020. Clin Infect Dis. 2020 Apr 11:ciaa424. PubMed: https://pubmed.gov/32277759. Full-text: https://doi.org/10.1093/cid/ciaa424

Day M. Covid-19: European drugs agency to review safety of ibuprofen. BMJ. 2020 Mar 23;368:m1168. PubMed: https://pubmed.gov/32205306. Full-text: https://doi.org/10.1136/bmj.m1168

DeBiasi RL, Song X, Delaney M, et al. Severe COVID-19 in Children and Young Adults in the Washington, DC Metropolitan Region. J Pediatr. 2020 May 13. PubMed: https://pubmed.gov/32405091. Full-text: https://doi.org/10.1016/j.jpeds.2020.05.007

Dietz SM, van Stijn D, Burgner D, et al. Dissecting Kawasaki disease: a state-of-the-art review. Eur J Pediatr. 2017 Aug;176(8):995-1009. PubMed: https://pubmed.gov/28656474. Full-text: https://doi.org/10.1007/s00431-017-2937-5

Dong Y, Mo X, Hu Y, et al. Epidemiology of COVID-19 Among Children in China. Pediatrics. 2020 Mar 16. pii: peds.2020-0702. PubMed: https://pubmed.gov/32179660. Full-text: https://doi.org/10.1542/peds.2020-0702

Dunn M, Muthu N, Burlingame CC, et al. Reducing Albuterol Use in Children With Bronchiolitis. Pediatrics. 2020 Jan;145(1). pii: peds.2019-0306. PubMed: https://pubmed.gov/31810996. Full-text: https://doi.org/10.1542/peds.2019-0306

European Centre for Disease Prevention and Control. Paediatric inflammatory multisystem syndrome and SARS-CoV-2 infection in children – 15 May 2020. ECDC: Stockholm; 2020. Full-text: https://www.ecdc.europa.eu/en/publications-data/paediatric-inflammatory-multisystem-syndrome-and-sars-cov-2-rapid-risk-assessment

Garazzino S, Montagnani C, Donà D, et al. Multicentre Italian study of SARS-CoV-2 infection in children and adolescents, preliminary data as at 10 April 2020. Euro Surveill. 2020 May;25(18):2000600. PubMed: https://pubmed.gov/32400362. Full-text: https://doi.org/10.2807/1560-7917.ES.2020.25.18.2000600.

Gudbjartsson DF, Helgason A, Jonsson H, et al. Spread of SARS-CoV-2 in the Icelandic Population. N Engl J Med. 2020 Apr 14:NEJMoa2006100. PubMed: https://pubmed.gov/32289214. Full-text: https://doi.org/10.1056/NEJMoa2006100

Hains DS, Schwaderer AL, Carroll AE, et al. Asymptomatic Seroconversion of Immunoglobulins to SARS-CoV-2 in a Pediatric Dialysis Unit. JAMA. 2020 May 14:e208438. PubMed: https://pubmed.gov/32407440. Full-text: https://doi.org/10.1001/jama.2020.8438

Hamiel U, Kozer E, Youngster I. SARS-CoV-2 Rates in BCG-Vaccinated and Unvaccinated Young Adults. JAMA. 2020 May 13:e208189. PubMed: https://pubmed.gov/32401274. Full-text: https://doi.org/10.1001/jama.2020.8189

Han H, Luo Q, Mo F, Long L, Zheng W. SARS-CoV-2 RNA more readily detected in induced sputum than in throat swabs of convalescent COVID-19 patients. Lancet Infect Dis. 2020 Mar 12. pii: S1473-3099(20)30174-2. PubMed: https://pubmed.gov/32171389. Full-text: https://doi.org/10.1016/S1473-3099(20)30174-2

Hauer J, Fischer U, Auer F, Borkhardt A. Regional BCG vaccination policy in former East- and West-Germany may impact on both severity of SARS-CoV-2 and incidence of childhood leukemia. Full-text: https://www.gpoh.de/fileadmin/user_upload/J._Hauer_et_al__Leukemia_2020__PrePrint.pdf

Hedrich CM, Schnabel A, Hospach T. Kawasaki Disease. Front Pediatr. 2018 Jul 10;6:198. PubMed: https://pubmed.gov/30042935. Full-text: https://doi.org/10.3389/fped.2018.00198. eCollection 2018.

Holshue ML, DeBolt C, Lindquist S, et al. First Case of 2019 Novel Coronavirus in the United States. N Engl J Med. 2020 Mar 5;382(10):929-936. PubMed: https://pubmed.gov/32004427. Full-text: https://doi.org/10.1056/NEJMoa2001191

Hrusak O, Kalina T, Wolf J. Flash survey on severe acute respiratory syndrome coronavirus-2 infections in paediatric patients on anticancer treatment. European Journal of Cancer 2020 April 7. Full-text: https://doi.org/10.1016/j.ejca.2020.03.021

Jones VG, Mills M, Suarez D, et al. COVID-19 and Kawasaki Disease: Novel Virus and Novel Case. Hosp Pediatr. 2020 Apr 7:hpeds.2020-0123. PubMed: https://pubmed.gov/32265235. Full-text: https://doi.org/10.1542/hpeds.2020-0123

Jordan-Villegas A, Chang ML, Ramilo O, Mejías A. Concomitant respiratory viral infections in children with Kawasaki disease. Pediatr Infect Dis J. 2010 Aug;29(8):770-2. PubMed: https://pubmed.gov/20354462. Full-text: https://doi.org/10.1097/INF.0b013e3181dba70b.

Kanegaye JT, Wilder MS, Molkara D, et al. Recognition of a Kawasaki disease shock syndrome. Pediatrics. 2009 May;123(5):e783-9. PubMed: https://pubmed.gov/19403470. Full-text: https://doi.org/10.1542/peds.2008-1871.

Lazzerini M, Barbi E, Apicella A, Marchetti F, Cardinale F, Trobia G. Delayed access or provision of care in Italy resulting from fear of COVID-19. Lancet Child Adolesc Health. 2020 Apr 9. pii: S2352-4642(20)30108-5. PubMed: https://pubmed.gov/32278365. Full-text: https://doi.org/10.1016/S2352-4642(20)30108-5

Lee N, Allen Chan KC, Hui DS, et al. Effects of early corticosteroid treatment on plasma SARS-associated Coronavirus RNA concentrations in adult patients. J Clin Virol. 2004 Dec;31(4):304-9. PubMed: https://pubmed.gov/15494274. Full-text: https://doi.org/10.1016/j.jcv.2004.07.006

Livingston E, Bucher K. Coronavirus Disease 2019 (COVID-19) in Italy. JAMA. 2020 Mar 17. pii: 2763401. PubMed: https://pubmed.gov/32181795. Full-text: https://doi.org/10.1001/jama.2020.4344

Lu Q, Shi Y. Coronavirus disease (COVID-19) and neonate: What neonatologist need to know. J Med Virol. 2020 Mar 1. PubMed: https://pubmed.gov/32115733. Full-text: https://doi.org/10.1002/jmv.25740

Lu X, Zhang L, Du H, et al. SARS-CoV-2 Infection in Children. N Engl J Med. 2020 Mar 18. PubMed: https://pubmed.gov/32187458. Full-text: https://doi.org/10.1056/NEJMc2005073

Ludvigsson JF. Systematic review of COVID-19 in children shows milder cases and a better prognosis than adults. Acta Paediatr. 2020 Jun;109(6):1088-1095. PubMed: https://pubmed.gov/32202343. Full-text: https://doi.org/10.1111/apa.15270

Mathur S, Fuchs A, Bielicki J, Van Den Anker J, Sharland M. Antibiotic use for community-acquired pneumonia in neonates and children: WHO evidence review. Paediatr Int Child Health. 2018 Nov;38(sup1):S66-S75. PubMed: https://pubmed.gov/29790844. Full-text: https://doi.org/10.1080/20469047.2017.1409455

McCrindle BW, Rowley AH, Newburger JW, et al. Diagnosis, Treatment, and Long-Term Management of Kawasaki Disease: A Scientific Statement for Health Professionals From the American Heart Association. Circulation. 2017 Apr 25;135(17):e927-e999. PubMed: https://pubmed.gov/28356445. Full-text: https://doi.org/10.1161/CIR.0000000000000484

Mehta NS, Mytton OT, Mullins EWS, et al. SARS-CoV-2 (COVID-19): What do we know about children? A systematic review. Clin Infect Dis. 2020 May 11:ciaa556. PubMed: https://pubmed.gov/32392337. Full-text: https://doi.org/10.1093/cid/ciaa556

Molloy EJ, Bearer CF. COVID-19 in children and altered inflammatory responses. Pediatr Res. 2020 Apr 3. pii: 10.1038/s41390-020-0881-y. PubMed: https://pubmed.gov/32244248. Full-text: https://doi.org/10.1038/s41390-020-0881-y

Moorlag SJCFM, Arts RJW, van Crevel R, Netea MG. Non-specific effects of BCG vaccine on viral infections. Clin Microbiol Infect. 2019 Dec;25(12):1473-1478. PubMed: https://pubmed.gov/31055165. Full-text: https://doi.org/10.1016/j.cmi.2019.04.020

Mulangu S, Dodd LE, Davey RT Jr, et al. A Randomized, Controlled Trial of Ebola Virus Disease Therapeutics. N Engl J Med. 2019 Dec 12;381(24):2293-2303. PubMed: https://pubmed.gov/31774950. Full-text: https://doi.org/10.1056/NEJMoa1910993

Niehues T, Ozgur TT. The Efficacy and Evidence-Based Use of Biologics in Children and Adolescents. Dtsch Arztebl Int. 2019 Oct 18;116(42):703-710. PubMed: https://pubmed.gov/31711560. Full-text: https://doi.org/arztebl.2019.0703

Ogimi C, Englund JA, Bradford MC, Qin X, Boeckh M, Waghmare A. Characteristics and Outcomes of Coronavirus Infection in Children: The Role of Viral Factors and an Immunocompromised State. J Pediatric Infect Dis Soc. 2019 Mar 28;8(1):21-28. PubMed: https://pubmed.gov/29447395. Full-text: https://doi.org/10.1093/jpids/pix093

Paediatric European Network for Treatment of AIDS (PENTA). Once vs. twice-daily lopinavir/ritonavir in HIV-1-infected children. AIDS. 2015 Nov 28;29(18):2447-57. PubMed: https://pubmed.gov/26558544. Full-text: https://doi.org/10.1097/QAD.0000000000000862

Parri N, Lenge M, Buonsenso D; Coronavirus Infection in Pediatric Emergency Departments (CONFIDENCE) Research Group. Children with Covid-19 in Pediatric Emergency Departments in Italy. N Engl J Med. 2020 May 1:NEJMc2007617. PubMed: https://pubmed.gov/32356945. Full-text: https://doi.org/10.1056/NEJMc2007617

Qiu H, Wu J, Hong L, Luo Y, Song Q, Chen D. Clinical and epidemiological features of 36 children with coronavirus disease 2019 (COVID-19) in Zhejiang, China: an observational cohort study. Lancet Infect Dis. 2020 Mar 25. pii: S1473-3099(20)30198-5. PubMed: https://pubmed.gov/32220650. Full-text: https://doi.org/10.1016/S1473-3099(20)30198-5

Riphagen S, Gomez X, Gonzalez-Martinez C, Wilkinson N, Theocharis P. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet. 2020 May 23;395(10237):1607-1608. PubMed: https://pubmed.gov/32386565. Full-text: https://doi.org/10.1016/S0140-6736(20)31094-1

Rowley AH, Shulman ST. The Epidemiology and Pathogenesis of Kawasaki Disease. Front Pediatr. 2018 Dec 11;6:374. PubMed: https://pubmed.gov/30619784. Full-text: https://doi.org/10.3389/fped.2018.00374. eCollection 2018.

Royal College of Paediatrics and Child Health, editor. Guidance: Paediatric multisystem inflammatory syndrome temporally associated with COVID-19. UK: Royal College of Paediatrics and Child Health; 2020. Full-text: https://www.rcpch.ac.uk/resources/guidance-paediatric-multisystem-inflammatory-syndrome-temporally-associated-covid-19

Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet. 2020 Feb 15;395(10223):473-475. PubMed: https://pubmed.gov/32043983. Full-text: https://doi.org/10.1016/S0140-6736(20)30317-2

Schwartz DA. An Analysis of 38 Pregnant Women with COVID-19, Their Newborn Infants, and Maternal-Fetal Transmission of SARS-CoV-2: Maternal Coronavirus Infections and Pregnancy Outcomes. Arch Pathol Lab Med. 2020 Mar 17. PubMed: https://pubmed.gov/32180426. Full-text: https://doi.org/10.5858/arpa.2020-0901-SA

She J, Liu L, Liu W. COVID-19 epidemic: Disease characteristics in children. J Med Virol. 2020 Mar 31. PubMed: https://pubmed.gov/32232980. Full-text: https://doi.org/10.1002/jmv.25807

Shekerdemian LS, Mahmood NR, Wolfe KK, et al. Characteristics and Outcomes of Children With Coronavirus Disease 2019 (COVID-19) Infection Admitted to US and Canadian Pediatric Intensive Care Units. JAMA Pediatr. 2020 May 11. PubMed: https://pubmed.gov/32392288. Full-text: https://doi.org/10.1001/jamapediatrics.2020.1948

Shen K, Yang Y, Wang T, et al. Diagnosis, treatment, and prevention of 2019 novel coronavirus infection in children: experts´ consensus statement. World J Pediatr. 2020 Feb 7. pii: 10.1007/s12519-020-00343-7. PubMed: https://pubmed.gov/32034659. Full-text: https://doi.org/10.1007/s12519-020-00343-7

Tagarro A, Epalza C, Santos M, et al. Screening and Severity of Coronavirus Disease 2019 (COVID-19) in Children in Madrid, Spain. JAMA Pediatr. 2020 Apr 8. pii: 2764394. PubMed: https://pubmed.gov/32267485. Full-text: https://doi.org/10.1001/jamapediatrics.2020.1346

Turnier JL, Anderson MS, Heizer HR, Jone PN, Glodé MP, Dominguez SR. Concurrent Respiratory Viruses and Kawasaki Disease. Pediatrics. 2015 Sep;136(3):e609-14. PubMed: https://pubmed.gov/26304824. Full-text: https://doi.org/10.1542/peds.2015-0950

Verdoni L, Mazza A, Gervasoni A, et al. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study. Lancet. 2020 May 13. PubMed: https://pubmed.gov/32410760. Full-text: https://doi.org/10.1016/S0140-6736(20)31103-X

Wang J, Qi H, Bao L, Li F, Shi Y. A contingency plan for the management of the 2019 novel coronavirus outbreak in neonatal intensive care units. Lancet Child Adolesc Health. 2020 Apr;4(4):258-259. PubMed: https://pubmed.gov/32043976. Full-text: https://doi.org/10.1016/S2352-4642(20)30040-7

Wei M, Yuan J, Liu Y, Fu T, Yu X, Zhang ZJ. Novel Coronavirus Infection in Hospitalized Infants Under 1 Year of Age in China. JAMA. 2020 Feb 14. pii: 2761659. PubMed: https://pubmed.gov/32058570. Full-text: https://doi.org/10.1001/jama.2020.2131

Weiss SR. Forty years with coronaviruses. J Exp Med. 2020 May 4;217(5). pii: 151597. PubMed: https://pubmed.gov/32232339. Full-text: https://doi.org/10.1084/jem.20200537

Xia W, Shao J, Guo Y, Peng X, Li Z, Hu D. Clinical and CT features in pediatric patients with COVID-19 infection: Different points from adults. Pediatr Pulmonol. 2020 May;55(5):1169-1174. PubMed: https://pubmed.gov/32134205. Full-text: https://doi.org/10.1002/ppul.24718

Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. Evidence for Gastrointestinal Infection of SARS-CoV-2. Gastroenterology. 2020 May;158(6):1831-1833.e3. PubMed: https://pubmed.gov/32142773. Full-text: https://doi.org/10.1053/j.gastro.2020.02.055

Yao X, Ye F, Zhang M, et al. In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 2020 Mar 9. pii: 5801998. PubMed: https://pubmed.gov/32150618. Full-text: https://doi.org/10.1093/cid/ciaa237

Zeng H, Xu C, Fan J, et al. Antibodies in Infants Born to Mothers With COVID-19 Pneumonia. JAMA. 2020 Mar 26. pii: 2763854. PubMed: https://pubmed.gov/32215589. Full-text: https://doi.org/10.1001/jama.2020.4861

Zeng L, Xia S, Yuan W, et al. Neonatal Early-Onset Infection With SARS-CoV-2 in 33 Neonates Born to Mothers With COVID-19 in Wuhan, China. JAMA Pediatr. 2020 Mar 26. pii: 2763787. PubMed: https://pubmed.gov/32215598. Full-text: https://doi.org/10.1001/jamapediatrics.2020.0878

Zhou D, Dai SM, Tong Q. COVID-19: a recommendation to examine the effect of hydroxychloroquine in preventing infection and progression. J Antimicrob Chemother. 2020 Mar 20. pii: 5810487. PubMed: https://pubmed.gov/32196083. Full-text: https://doi.org/10.1093/jac/dkaa114

Zimmermann P, Curtis N. Coronavirus Infections in Children Including COVID-19: An Overview of the Epidemiology, Clinical Features, Diagnosis, Treatment and Prevention Options in Children. Pediatr Infect Dis J. 2020 May;39(5):355-368. PubMed: https://pubmed.gov/32310621. Full-text: https://doi.org/10.1097/INF.0000000000002660