1. van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1 [Letter]. N Engl J Med. 2020;382:1564-1567. [PMID: 32182409] doi:10.1056/NEJMc2004973 Google Scholar
  2. Chin AWH, Chu JTS, Perera MRA, et al. Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe. 2020;1:e10. [PMID: 32835322] doi:10.1016/S2666-5247(20)30003-3 Google Scholar
  3. Jiang FC, Jiang XL, Wang ZG, et al. Detection of severe acute respiratory syndrome coronavirus 2 RNA on surfaces in quarantine rooms. Emerg Infect Dis. 2020;26. [PMID: 32421495] doi:10.3201/eid2609.201435 Google Scholar
  4. Lui G, Lai CKC, Chen Z, et al. SARS-CoV-2 RNA detection on disposable wooden chopsticks, Hong Kong [Letter]. Emerg Infect Dis. 2020;26. [PMID: 32491982] doi:10.3201/eid2609.202135 Google Scholar
  5. Santarpia JL, Herrera VL, Rivera DN, et al. The infectious nature of patient-generated SARS-CoV-2 aerosol. medRxiv. Preprint posted online 21 July 2020. doi:10.1101/2020.07.13.20041632 Google Scholar
  6. Lednicky JA, Lauzardo M, Fan ZH, et al. Viable SARS-CoV-2 in the air of a hospital room with COVID-19 patients. medRxiv. Preprint posted online 4 August 2020. doi:10.1101/2020.08.03.20167395 Google Scholar
  7. Bloise I, Gómez-Arroyo B, García-Rodríguez J; SARS-CoV-2 Working Group. Detection of SARS-CoV-2 on high-touch surfaces in a clinical microbiology laboratory [Letter]. J Hosp Infect. 2020;105:784-786. [PMID: 32422312] doi:10.1016/j.jhin.2020.05.017 Google Scholar
  8. Lv J, Yang J, Xue J, et al. Detection of SARS-CoV-2 RNA residue on object surfaces in nucleic acid testing laboratory using droplet digital PCR. Sci Total Environ. 2020;742:140370. [PMID: 32619841] doi:10.1016/j.scitotenv.2020.140370 Google Scholar
  9. Wu S, Wang Y, Jin X, et al. Environmental contamination by SARS-CoV-2 in a designated hospital for coronavirus disease 2019. Am J Infect Control. 2020;48:910-914. [PMID: 32407826] doi:10.1016/j.ajic.2020.05.003 Google Scholar
  10. Faridi S, Niazi S, Sadeghi K, et al. A field indoor air measurement of SARS-CoV-2 in the patient rooms of the largest hospital in Iran. Sci Total Environ. 2020;725:138401. [PMID: 32283308] doi:10.1016/j.scitotenv.2020.138401 Google Scholar
  11. Santarpia JL, Rivera DN, Herrera VL, et al. Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care. Sci Rep. 2020;10:12732. [PMID: 32728118] doi:10.1038/s41598-020-69286-3 Google Scholar
  12. Colaneri M, Seminari E, Novati S, et al; COVID19 IRCCS San Matteo Pavia Task Force. Severe acute respiratory syndrome coronavirus 2 RNA contamination of inanimate surfaces and virus viability in a health care emergency unit. Clin Microbiol Infect. 2020;26:1094.e1-1094.e5. [PMID: 32450255] doi:10.1016/j.cmi.2020.05.009 Google Scholar
  13. Lai X, Wang M, Qin C, et al. Coronavirus disease 2019 (COVID-2019) infection among health care workers and implications for prevention measures in a tertiary hospital in Wuhan, China. JAMA Netw Open. 2020;3:e209666. [PMID: 32437575] doi:10.1001/jamanetworkopen.2020.9666 Google Scholar
  14. Ong SWX, Tan YK, Chia PY, et al. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA. 2020. [PMID: 32129805] doi:10.1001/jama.2020.3227 Google Scholar
  15. Cheng VC, Wong SC, Chan VW, et al. Air and environmental sampling for SARS-CoV-2 around hospitalized patients with coronavirus disease 2019 (COVID-19). Infect Control Hosp Epidemiol. 2020:1-8. [PMID: 32507114] doi:10.1017/ice.2020.282 Google Scholar
  16. Liu Y, Ning Z, Chen Y, et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature. 2020;582:557-560. [PMID: 32340022] doi:10.1038/s41586-020-2271-3 Google Scholar
  17. Guo ZD, Wang ZY, Zhang SF, et al. Aerosol and surface distribution of severe acute respiratory syndrome coronavirus 2 in hospital wards, Wuhan, China, 2020. Emerg Infect Dis. 2020;26:1583-1591. [PMID: 32275497] doi:10.3201/eid2607.200885 Google Scholar
  18. Razzini K, Castrica M, Menchetti L, et al. SARS-CoV-2 RNA detection in the air and on surfaces in the COVID-19 ward of a hospital in Milan, Italy. Sci Total Environ. 2020;742:140540. [PMID: 32619843] doi:10.1016/j.scitotenv.2020.140540 Google Scholar
  19. Zhou J, Otter JA, Price JR, et al. Investigating SARS-CoV-2 surface and air contamination in an acute healthcare setting during the peak of the COVID-19 pandemic in London. Clin Infect Dis. 2020. [PMID: 32634826] doi:10.1093/cid/ciaa905 Google Scholar
  20. Jan I, Chen K, Sayan M, et al. Prevalence of surface contamination with SARS-CoV-2 in a radiation oncology clinic. JAMA Oncol. 2020. [PMID: 32852509] doi:10.1001/jamaoncol.2020.3552 Google Scholar
  21. Mouchtouri VA, Koureas M, Kyritsi M, et al. Environmental contamination of SARS-CoV-2 on surfaces, air-conditioner and ventilation systems. Int J Hyg Environ Health. 2020;230:113599. [PMID: 32823069] doi:10.1016/j.ijheh.2020.113599 Google Scholar
  22. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271-280.e8. [PMID: 32142651] doi:10.1016/j.cell.2020.02.052 Google Scholar
  23. Walls AC, Park YJ, Tortorici MA, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181:281-292.e6. [PMID: 32155444] doi:10.1016/j.cell.2020.02.058 Google Scholar
  24. Wölfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581:465-469. [PMID: 32235945] doi:10.1038/s41586-020-2196-x Google Scholar
  25. Jing QL, Liu MJ, Zhang ZB, et al. Household secondary attack rate of COVID-19 and associated determinants in Guangzhou, China: a retrospective cohort study. Lancet Infect Dis. 2020. [PMID: 32562601] doi:10.1016/S1473-3099(20)30471-0 Google Scholar
  26. Rosenberg ES, Dufort EM, Blog DS, et al; New York State Coronavirus 2019 Response Team. COVID-19 testing, epidemic features, hospital outcomes, and household prevalence, New York State—March 2020. Clin Infect Dis. 2020. [PMID: 32382743] doi:10.1093/cid/ciaa549 Google Scholar
  27. Zhang J, Litvinova M, Liang Y, et al. Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China. Science. 2020;368:1481-1486. [PMID: 32350060] doi:10.1126/science.abb8001 Google Scholar
  28. Davies NG, Klepac P, Liu Y, et al; CMMID COVID-19 working group. Age-dependent effects in the transmission and control of COVID-19 epidemics. Nat Med. 2020;26:1205-1211. [PMID: 32546824] doi:10.1038/s41591-020-0962-9 Google Scholar
  29. Gudbjartsson DF, Helgason A, Jonsson H, et al. Spread of SARS-CoV-2 in the Icelandic population. N Engl J Med. 2020;382:2302-2315. [PMID: 32289214] doi:10.1056/NEJMoa2006100 Google Scholar
  30. Li W, Zhang B, Lu J, et al. The characteristics of household transmission of COVID-19. Clin Infect Dis. 2020. [PMID: 32301964] doi:10.1093/cid/ciaa450 Google Scholar
  31. Bunyavanich S, Do A, Vicencio A. Nasal gene expression of angiotensin-converting enzyme 2 in children and adults. JAMA. 2020. [PMID: 32432657] doi:10.1001/jama.2020.8707 Google Scholar
  32. Yonker LM, Neilan AM, Bartsch Y, et al. Pediatric SARS-CoV-2: clinical presentation, infectivity, and immune responses. J Pediatr. 2020. [PMID: 32827525] doi:10.1016/j.jpeds.2020.08.037 Google Scholar
  33. L’Huillier AG, Torriani G, Pigny F, et al. Culture-competent SARS-CoV-2 in nasopharynx of symptomatic neonates, children, and adolescents. Emerg Infect Dis. 2020;26. [PMID: 32603290] doi:10.3201/eid2610.202403 Google Scholar
  34. Heald-Sargent T, Muller WJ, Zheng X, et al. Age-related differences in nasopharyngeal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) levels in patients with mild to moderate coronavirus disease 2019 (COVID-19). JAMA Pediatr. 2020. [PMID: 32745201] doi:10.1001/jamapediatrics.2020.3651 Google Scholar
  35. Maltezou HC, Vorou R, Papadima K, et al. Transmission dynamics of SARS-CoV-2 within families with children in Greece: a study of 23 clusters. J Med Virol. 2020. [PMID: 32767703] doi:10.1002/jmv.26394 Google Scholar
  36. Posfay-Barbe KM, Wagner N, Gauthey M, et al. COVID-19 in children and the dynamics of infection in families. Pediatrics. 2020;146. [PMID: 32457213] doi:10.1542/peds.2020-1576 Google Scholar
  37. Park YJ, Choe YJ, Park O, et al; COVID-19 National Emergency Response Center, Epidemiology and Case Management Team. Contact tracing during coronavirus disease outbreak, South Korea, 2020. Emerg Infect Dis. 2020;26. [PMID: 32673193] doi:10.3201/eid2610.201315 Google Scholar
  38. Kim J, Choe YJ, Lee J, et al. Role of children in household transmission of COVID-19. Arch Dis Child. 2020. [PMID: 32769089] doi:10.1136/archdischild-2020-319910 Google Scholar
  39. Lewis NM, Chu VT, Ye D, et al. Household transmission of SARS-CoV-2 in the United States. Clin Infect Dis. 2020. doi:10.1093/cid/ciaa1166 Google Scholar
  40. Korber B, Fischer WM, Gnanakaran S, et al; Sheffield COVID-19 Genomics Group. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell. 2020;182:812-827.e19. [PMID: 32697968] doi:10.1016/j.cell.2020.06.043 Google Scholar
  41. Volz EM, Hill V, McCrone JT, et al. Evaluating the effects of SARS-CoV-2 Spike mutation D614G on transmissibility and pathogenicity. medRxiv. Preprint posted online 4 August 2020. doi:10.1101/2020.07.31.20166082 Google Scholar
  42. Daniloski Z, Guo X, Sanjana NE. The D614G mutation in SARS-CoV-2 Spike increases transduction of multiple human cell types. bioRxiv. Preprint posted online 15 June 2020. doi:10.1101/2020.06.14.151357 Google Scholar
  43. Zhang L, Jackson CB, Mou H, et al. The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity. bioRxiv. Preprint posted online 12 June 2020. doi:10.1101/2020.06.12.148726 Google Scholar
  44. Mansbach RA, Chakraborty S, Nguyen K, et al. The SARS-CoV-2 Spike variant D614G favors an open conformational state. bioRxiv. Preprint posted online 26 July 2020. doi:10.1101/2020.07.26.219741 Google Scholar
  45. Wei J, Li Y. Airborne spread of infectious agents in the indoor environment. Am J Infect Control. 2016;44:S102-8. [PMID: 27590694] doi:10.1016/j.ajic.2016.06.003 Google Scholar
  46. Klompas M, Baker MA, Rhee C. Airborne transmission of SARS-CoV-2: theoretical considerations and available evidence. JAMA. 2020;324:441-442. [PMID: 32749495] doi:10.1001/jama.2020.12458 Google Scholar
  47. Fennelly KP. Particle sizes of infectious aerosols: implications for infection control. Lancet Respir Med. 2020;8:914-924. [PMID: 32717211] doi:10.1016/S2213-2600(20)30323-4 Google Scholar
  48. Lu J, Gu J, Li K, et al. COVID-19 outbreak associated with air conditioning in restaurant, Guangzhou, China, 2020. Emerg Infect Dis. 2020;26:1628-1631. [PMID: 32240078] doi:10.3201/eid2607.200764 Google Scholar
  49. Ma J, Qi X, Chen H, et al. COVID-19 patients in earlier stages exhaled millions of SARS-CoV-2 per hour. Clin Infect Dis. 2020. [PMID: 32857833] doi:10.1093/cid/ciaa1283 Google Scholar
  50. Courtemanche C, Garuccio J, Le A, et al. Strong social distancing measures in the United States reduced the COVID-19 growth rate. Health Aff (Millwood). 2020;39:1237-1246. [PMID: 32407171] doi:10.1377/hlthaff.2020.00608 Google Scholar
  51. Chu DK, Akl EA, Duda S, et al; COVID-19 Systematic Urgent Review Group Effort (SURGE) study authors. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet. 2020;395:1973-1987. [PMID: 32497510] doi:10.1016/S0140-6736(20)31142-9 Google Scholar
  52. Hu M, Lin H, Wang J, et al. The risk of COVID-19 transmission in train passengers: an epidemiological and modelling study. Clin Infect Dis. 2020. [PMID: 32726405] doi:10.1093/cid/ciaa1057 Google Scholar
  53. Jang S, Han SH, Rhee JY. Cluster of coronavirus disease associated with fitness dance classes, South Korea. Emerg Infect Dis. 2020;26:1917-1920. [PMID: 32412896] doi:10.3201/eid2608.200633 Google Scholar
  54. Wang Y, Tian H, Zhang L, et al. Reduction of secondary transmission of SARS-CoV-2 in households by face mask use, disinfection and social distancing: a cohort study in Beijing, China. BMJ Glob Health. 2020;5. [PMID: 32467353] doi:10.1136/bmjgh-2020-002794 Google Scholar
  55. James A, Eagle L, Phillips C, et al. High COVID-19 attack rate among attendees at events at a church — Arkansas, March 2020. MMWR Morb Mortal Wkly Rep. 2020;69:632-635. [PMID: 32437338] doi:10.15585/mmwr.mm6920e2 Google Scholar
  56. Adam D, Wu P, Wong J, et al. Clustering and superspreading potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in Hong Kong. Research Square. Preprint posted online 21 May 2020. doi:10.21203/rs.3.rs-29548/v1 Google Scholar
  57. Furuse Y, Sando E, Tsuchiya N, et al. Clusters of coronavirus disease in communities, Japan, January-April 2020. Emerg Infect Dis. 2020;26. [PMID: 32521222] doi:10.3201/eid2609.202272 Google Scholar
  58. Qian H, Miao T, Liu L, et al. Indoor transmission of SARS-CoV-2. medRxiv. Preprint posted online 7 April 2020. doi:10.1101/2020.04.04.20053058 Google Scholar
  59. Nishiura H, Oshitani H, Kobayashi T, et al. Closed environments facilitate secondary transmission of coronavirus disease 2019 (COVID-19). medRxiv. Preprint posted online 16 April 2020. doi:10.1101/2020.02.28.20029272 Google Scholar
  60. Leclerc QJ, Fuller NM, Knight LE, et al; CMMID COVID-19 Working Group. What settings have been linked to SARS-CoV-2 transmission clusters? Wellcome Open Res. 2020;5:83. [PMID: 32656368] doi:10.12688/wellcomeopenres.15889.2 Google Scholar
  61. Shen Y, Li C, Dong H, et al. Community outbreak investigation of SARS-CoV-2 transmission among bus riders in eastern China. JAMA Intern Med. 2020. [PMID: 32870239] doi:10.1001/jamainternmed.2020.5225 Google Scholar
  62. Lee JK, Jeong HW. Wearing face masks regardless of symptoms is crucial for preventing the spread of COVID-19 in hospitals. Infect Control Hosp Epidemiol. 2020:1-2. [PMID: 32372736] doi:10.1017/ice.2020.202 Google Scholar
  63. Mitze T, Kosfeld R, Rode J, et al. Face masks considerably reduce Covid-19 cases in Germany: a synthetic control method approach. IZA Discussion Paper no. 13319. 9 June 2020. Accessed at https://ssrn.com/abstract=3620634 on 8 August 2020. Google Scholar
  64. Lyu W, Wehby GL. Community use of face masks and COVID-19: evidence from a natural experiment of state mandates in the US. Health Aff (Millwood). 2020;39:1419-1425. [PMID: 32543923] doi:10.1377/hlthaff.2020.00818 Google Scholar
  65. Chou R, Dana T, Jungbauer R, et al. Masks for prevention of respiratory virus infections, including SARS-CoV-2, in health care and community settings. A living rapid review. Ann Intern Med. 2020. [PMID: 32579379] doi:10.7326/M20-3213 Google Scholar
  66. Deng W, Bao L, Gao H, et al. Ocular conjunctival inoculation of SARS-CoV-2 can cause mild COVID-19 in rhesus macaques. Nat Commun. 2020;11:4400. [PMID: 32879306] doi:10.1038/s41467-020-18149-6 Google Scholar
  67. Cai J, Sun W, Huang J, et al. Indirect virus transmission in cluster of COVID-19 cases, Wenzhou, China, 2020. Emerg Infect Dis. 2020;26:1343-1345. [PMID: 32163030] doi:10.3201/eid2606.200412 Google Scholar
  68. Lessells R, Moosa Y, de Oliveira T. Report into a nosocomial outbreak of coronavirus disease 2019 (COVID-19) at Netcare St. Augustine’s Hospital. 15 May 2020. Accessed at www.krisp.org.za/manuscripts/StAugustinesHospitalOutbreakInvestigation_FinalReport_15may2020_comp.pdf on 8 August 2020. Google Scholar
  69. Bae SH, Shin H, Koo HY, et al. Asymptomatic transmission of SARS-CoV-2 on evacuation flight. Emerg Infect Dis. 2020;26. [PMID: 32822289] doi:10.3201/eid2611.203353 Google Scholar
  70. Ran L, Chen X, Wang Y, et al. Risk factors of healthcare workers with corona virus disease 2019: a retrospective cohort study in a designated hospital of Wuhan in China. Clin Infect Dis. 2020. [PMID: 32179890] doi:10.1093/cid/ciaa287 Google Scholar
  71. van Kampen JJA, van de Vijver DAMC, Fraaij PLA, et al. Shedding of infectious virus in hospitalized patients with coronavirus disease-2019 (COVID-19): duration and key determinants. medRxiv. Preprint posted online 9 June 2020. doi:10.1101/2020.06.08.20125310 Google Scholar
  72. Cheng HY, Jian SW, Liu DP, et al; Taiwan COVID-19 Outbreak Investigation Team. Contact tracing assessment of COVID-19 transmission dynamics in Taiwan and risk at different exposure periods before and after symptom onset. JAMA Intern Med. 2020. [PMID: 32356867] doi:10.1001/jamainternmed.2020.2020 Google Scholar
  73. Shi J, Wen Z, Zhong G, et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science. 2020;368:1016-1020. [PMID: 32269068] doi:10.1126/science.abb7015 Google Scholar
  74. Sit THC, Brackman CJ, Ip SM, et al. Infection of dogs with SARS-CoV-2. Nature. 2020. [PMID: 32408337] doi:10.1038/s41586-020-2334-5 Google Scholar
  75. Richard M, Kok A, de Meulder D, et al. SARS-CoV-2 is transmitted via contact and via the air between ferrets. Nat Commun. 2020;11:3496. [PMID: 32641684] doi:10.1038/s41467-020-17367-2 Google Scholar
  76. Garigliany M, Van Laere AS, Clercx C, et al. SARS-CoV-2 natural transmission from human to cat, Belgium, March 2020. Emerg Infect Dis. 2020;26. [PMID: 32788033] doi:10.3201/eid2612.202223 Google Scholar
  77. Halfmann PJ, Hatta M, Chiba S, et al. Transmission of SARS-CoV-2 in domestic cats [Letter]. N Engl J Med. 2020;383:592-594. [PMID: 32402157] doi:10.1056/NEJMc2013400 Google Scholar
  78. Oreshkova N, Molenaar RJ, Vreman S, et al. SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. Euro Surveill. 2020;25. [PMID: 32553059] doi:10.2807/1560-7917.ES.2020.25.23.2001005 Google Scholar
  79. Oude Munnink BB, Sikkema RS, Nieuwenhuijse DF, et al. Jumping back and forth: anthropozoonotic and zoonotic transmission of SARS-CoV-2 on mink farms. bioRxiv. Preprint posted online 1 September 2020. doi:10.1101/2020.09.01.277152 Google Scholar
  80. Yang Z, Liu Y. Vertical transmission of severe acute respiratory syndrome coronavirus 2: a systematic review. Am J Perinatol. 2020;37:1055-1060. [PMID: 32403141] doi:10.1055/s-0040-1712161 Google Scholar
  81. Zeng H, Xu C, Fan J, et al. Antibodies in infants born to mothers with COVID-19 pneumonia. JAMA. 2020. [PMID: 32215589] doi:10.1001/jama.2020.4861 Google Scholar
  82. Dong L, Tian J, He S, et al. Possible vertical transmission of SARS-CoV-2 from an infected mother to her newborn. JAMA. 2020. [PMID: 32215581] doi:10.1001/jama.2020.4621 Google Scholar
  83. Kimberlin DW, Stagno S. Can SARS-CoV-2 infection be acquired in utero? More definitive evidence is needed. JAMA. 2020. [PMID: 32215579] doi:10.1001/jama.2020.4868 Google Scholar
  84. Zeng L, Xia S, Yuan W, et al. Neonatal early-onset infection with SARS-CoV-2 in 33 neonates born to mothers with COVID-19 in Wuhan, China. JAMA Pediatr. 2020. [PMID: 32215598] doi:10.1001/jamapediatrics.2020.0878 Google Scholar
  85. Alzamora MC, Paredes T, Caceres D, et al. Severe COVID-19 during pregnancy and possible vertical transmission. Am J Perinatol. 2020;37:861-865. [PMID: 32305046] doi:10.1055/s-0040-1710050 Google Scholar
  86. Patanè L, Morotti D, Giunta MR, et al. Vertical transmission of coronavirus disease 2019: severe acute respiratory syndrome coronavirus 2 RNA on the fetal side of the placenta in pregnancies with coronavirus disease 2019-positive mothers and neonates at birth. Am J Obstet Gynecol MFM. 2020;2:100145. [PMID: 32427221] doi:10.1016/j.ajogmf.2020.100145 Google Scholar
  87. Baud D, Greub G, Favre G, et al. Second-trimester miscarriage in a pregnant woman with SARS-CoV-2 infection. JAMA. 2020. [PMID: 32352491] doi:10.1001/jama.2020.7233 Google Scholar
  88. Vivanti AJ, Vauloup-Fellous C, Prevot S, et al. Transplacental transmission of SARS-CoV-2 infection. Nat Commun. 2020;11:3572. [PMID: 32665677] doi:10.1038/s41467-020-17436-6 Google Scholar
  89. Alamar I, Abu-Arja MH, Heyman T, et al. A possible case of vertical transmission of SARS-CoV-2 in a newborn with positive placental in situ hybridization of SARS-CoV-2 RNA. J Pediatric Infect Dis Soc. 2020. [PMID: 32888013] doi:10.1093/jpids/piaa109 Google Scholar
  90. Groß R, Conzelmann C, Müller JA, et al. Detection of SARS-CoV-2 in human breastmilk [Letter]. Lancet. 2020;395:1757-1758. [PMID: 32446324] doi:10.1016/S0140-6736(20)31181-8 Google Scholar
  91. Marín Gabriel MA, Cuadrado I, Álvarez Fernández B, et al; Neo-COVID-19 Research Group. Multicentre Spanish study found no incidences of viral transmission in infants born to mothers with COVID-19. Acta Paediatr. 2020. [PMID: 32649784] doi:10.1111/apa.15474 Google Scholar
  92. Chambers C, Krogstad P, Bertrand K, et al. Evaluation for SARS-CoV-2 in breast milk from 18 infected women. JAMA. 2020. [PMID: 32822495] doi:10.1001/jama.2020.15580 Google Scholar
  93. Gu J, Han B, Wang J. COVID-19: gastrointestinal manifestations and potential fecal-oral transmission [Editorial]. Gastroenterology. 2020;158:1518-1519. [PMID: 32142785] doi:10.1053/j.gastro.2020.02.054 Google Scholar
  94. Deng W, Bao L, Gao H, et al. Ocular conjunctival inoculation of SARS-CoV-2 can cause mild COVID-19 in Rhesus macaques. bioRxiv. Preprint posted online 30 March 2020. doi:10.1101/2020.03.13.990036 Google Scholar
  95. Wang W, Xu Y, Gao R, et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA. 2020. [PMID: 32159775] doi:10.1001/jama.2020.3786 Google Scholar
  96. Kim JM, Kim HM, Lee EJ, et al. Detection and isolation of SARS-CoV-2 in serum, urine, and stool specimens of COVID-19 patients from the Republic of Korea. Osong Public Health Res Perspect. 2020;11:112-117. [PMID: 32528816] doi:10.24171/j.phrp.2020.11.3.02 Google Scholar
  97. Sun J, Xiao J, Sun R, et al. Prolonged persistence of SARS-CoV-2 RNA in body fluids. Emerg Infect Dis. 2020;26:1834-1838. [PMID: 32383638] doi:10.3201/eid2608.201097 Google Scholar
  98. Parasa S, Desai M, Thoguluva Chandrasekar V, et al. Prevalence of gastrointestinal symptoms and fecal viral shedding in patients with coronavirus disease 2019: a systematic review and meta-analysis. JAMA Netw Open. 2020;3:e2011335. [PMID: 32525549] doi:10.1001/jamanetworkopen.2020.11335 Google Scholar
  99. van Doorn AS, Meijer B, Frampton CMA, et al. Systematic review with meta-analysis: SARS-CoV-2 stool testing and the potential for faecal-oral transmission. Aliment Pharmacol Ther. 2020. [PMID: 32852082] doi:10.1111/apt.16036 Google Scholar
  100. Patel J. Viability of SARS-CoV-2 in faecal bio-aerosols [Letter]. Colorectal Dis. 2020. [PMID: 32515130] doi:10.1111/codi.15181 Google Scholar
  101. Lai CKC, Ng RWY, Wong MCS, et al. Epidemiological characteristics of the first 100 cases of coronavirus disease 2019 (COVID-19) in Hong Kong Special Administrative Region, China, a city with a stringent containment policy. Int J Epidemiol. 2020. [PMID: 32601677] doi:10.1093/ije/dyaa106 Google Scholar
  102. Kang M, Wei J, Yuan J, et al. Probable evidence of fecal aerosol transmission of SARS-CoV-2 in a high-rise building. Ann Intern Med. 2020. [PMID: 32870707] doi:10.7326/M20-0928 Google Scholar
  103. Li D, Jin M, Bao P, et al. Clinical characteristics and results of semen tests among men with coronavirus disease 2019. JAMA Netw Open. 2020;3:e208292. [PMID: 32379329] doi:10.1001/jamanetworkopen.2020.8292 Google Scholar
  104. Qiu L, Liu X, Xiao M, et al. SARS-CoV-2 is not detectable in the vaginal fluid of women with severe COVID-19 infection. Clin Infect Dis. 2020;71:813-817. [PMID: 32241022] doi:10.1093/cid/ciaa375 Google Scholar
  105. Scorzolini L, Corpolongo A, Castilletti C, et al. Comment of the potential risks of sexual and vertical transmission of Covid-19 infection. Clin Infect Dis. 2020. [PMID: 32297915] doi:10.1093/cid/ciaa445 Google Scholar
  106. Prazuck T, Giaché S, Gubavu C, et al. Investigation of a family outbreak of COVID-19 using systematic rapid diagnostic tests raises new questions about transmission [Letter]. J Infect. 2020. [PMID: 32610107] doi:10.1016/j.jinf.2020.06.066 Google Scholar
  107. Hogan CA, Stevens B, Sahoo MK, et al. High frequency of SARS-CoV-2 RNAemia and association with severe disease. medRxiv. Preprint posted online 1 May 2020. doi:10.1101/2020.04.26.20080101 Google Scholar
  108. Fajnzylber JM, Regan J, Coxen K, et al. SARS-CoV-2 viral load is associated with increased disease severity and mortality. medRxiv. Preprint posted online 17 July 2020. doi:10.1101/2020.07.15.20131789 Google Scholar
  109. Chang L, Zhao L, Gong H, et al. Severe acute respiratory syndrome coronavirus 2 RNA detected in blood donations. Emerg Infect Dis. 2020;26:1631-1633. [PMID: 32243255] doi:10.3201/eid2607.200839 Google Scholar
  110. Qian G, Yang N, Ma AHY, et al. COVID-19 transmission within a family cluster by presymptomatic carriers in China. Clin Infect Dis. 2020;71:861-862. [PMID: 32201889] doi:10.1093/cid/ciaa316 Google Scholar
  111. Bai Y, Yao L, Wei T, et al. Presumed asymptomatic carrier transmission of COVID-19. JAMA. 2020. [PMID: 32083643] doi:10.1001/jama.2020.2565 Google Scholar
  112. Chau NVV, Thanh Lam V, Thanh Dung N, et al; OUCRU COVID-19 research group. The natural history and transmission potential of asymptomatic SARS-CoV-2 infection. Clin Infect Dis. 2020. [PMID: 32497212] doi:10.1093/cid/ciaa711 Google Scholar
  113. Luo L, Liu D, Liao X, et al. Contact settings and risk for transmission in 3410 close contacts of patients with COVID-19 in Guangzhou, China. A prospective cohort study. Ann Intern Med. 2020. [PMID: 32790510] doi:10.7326/M20-2671 Google Scholar
  114. Qiu X, Nergiz AI, Maraolo AE, et al. Defining the role of asymptomatic SARS-CoV-2 transmission: a living systematic review. medRxiv. Preprint posted online 3 September 2020. doi:10.1101/2020.09.01.20135194 Google Scholar
  115. Long QX, Tang XJ, Shi QL, et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med. 2020;26:1200-1204. [PMID: 32555424] doi:10.1038/s41591-020-0965-6 Google Scholar
  116. Lee S, Kim T, Lee E, et al. Clinical course and molecular viral shedding among asymptomatic and symptomatic patients with SARS-CoV-2 infection in a community treatment center in the Republic of Korea. JAMA Intern Med. 2020. [PMID: 32780793] doi:10.1001/jamainternmed.2020.3862 Google Scholar
  117. He X, Lau EHY, Wu P, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med. 2020;26:672-675. [PMID: 32296168] doi:10.1038/s41591-020-0869-5 Google Scholar
  118. Lauer SA, Grantz KH, Bi Q, et al. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann Intern Med. 2020;172:577-582. [PMID: 32150748] doi:10.7326/M20-0504 Google Scholar
  119. Yang L, Dai J, Zhao J, et al. Estimation of incubation period and serial interval of COVID-19: analysis of 178 cases and 131 transmission chains in Hubei province, China. Epidemiol Infect. 2020;148:e117. [PMID: 32594928] doi:10.1017/S0950268820001338 Google Scholar
  120. Xu XK, Liu XF, Wu Y, et al. Reconstruction of transmission pairs for novel coronavirus disease 2019 (COVID-19) in mainland China: estimation of super-spreading events, serial interval, and hazard of infection. Clin Infect Dis. 2020. [PMID: 32556265] doi:10.1093/cid/ciaa790 Google Scholar
  121. Shrestha NK, Marco Canosa F, Nowacki AS, et al. Distribution of transmission potential during non-severe COVID-19 illness. Clin Infect Dis. 2020. [PMID: 32594116] doi:10.1093/cid/ciaa886 Google Scholar
  122. Goyal A, Reeves DB, Cardozo-Ojeda EF, et al. Wrong person, place and time: viral load and contact network structure predict SARS-CoV-2 transmission and super-spreading events. medRxiv. Preprint posted online 7 August 2020. doi:10.1101/2020.08.07.20169920 Google Scholar
  123. To KK, Tsang OT, Leung WS, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis. 2020;20:565-574. [PMID: 32213337] doi:10.1016/S1473-3099(20)30196-1 Google Scholar
  124. Guo L, Ren L, Yang S, et al. Profiling early humoral response to diagnose novel coronavirus disease (COVID-19). Clin Infect Dis. 2020;71:778-785. [PMID: 32198501] doi:10.1093/cid/ciaa310 Google Scholar
  125. Liu Y, Yan LM, Wan L, et al. Viral dynamics in mild and severe cases of COVID-19 [Letter]. Lancet Infect Dis. 2020;20:656-657. [PMID: 32199493] doi:10.1016/S1473-3099(20)30232-2 Google Scholar
  126. Perera RAPM, Tso E, Tsang OTY, et al. SARS-CoV-2 virus culture and subgenomic RNA for respiratory specimens from patients with mild coronavirus disease. Emerg Infect Dis. 2020;26. [PMID: 32749957] doi:10.3201/eid2611.203219 Google Scholar
  127. Singanayagam A, Patel M, Charlett A, et al. Duration of infectiousness and correlation with RT-PCR cycle threshold values in cases of COVID-19, England, January to May 2020. Euro Surveill. 2020;25. [PMID: 32794447] doi:10.2807/1560-7917.ES.2020.25.32.2001483 Google Scholar
  128. Bullard J, Dust K, Funk D, et al. Predicting infectious SARS-CoV-2 from diagnostic samples. Clin Infect Dis. 2020. [PMID: 32442256] doi:10.1093/cid/ciaa638 Google Scholar
  129. Arons MM, Hatfield KM, Reddy SC, et al; Public Health–Seattle and King County and CDC COVID-19 Investigation Team. Presymptomatic SARS-CoV-2 infections and transmission in a skilled nursing facility. N Engl J Med. 2020;382:2081-2090. [PMID: 32329971] doi:10.1056/NEJMoa2008457 Google Scholar
  130. Wong SCY, Kwong RT, Wu TC, et al. Risk of nosocomial transmission of coronavirus disease 2019: an experience in a general ward setting in Hong Kong. J Hosp Infect. 2020;105:119-127. [PMID: 32259546] doi:10.1016/j.jhin.2020.03.036 Google Scholar
  131. Endo A, Abbott S, Kucharski AJ, et al; Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group. Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside China. Wellcome Open Res. 2020;5:67. [PMID: 32685698] doi:10.12688/wellcomeopenres.15842.3 Google Scholar
  132. Ferretti L, Wymant C, Kendall M, et al. Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. Science. 2020;368. [PMID: 32234805] doi:10.1126/science.abb6936 Google Scholar
  133. Althouse BM, Wenger EA, Miller JC, et al. Stochasticity and heterogeneity in the transmission dynamics of SARS-CoV-2. arXiv. Preprint posted online 27 May 2020. arXiv:2005.13689 Google Scholar
  134. Bi Q, Wu Y, Mei S, et al. Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study. Lancet Infect Dis. 2020;20:911-919. [PMID: 32353347] doi:10.1016/S1473-3099(20)30287-5 Google Scholar
  135. Miller D, Martin MA, Harel N, et al. Full genome viral sequences inform patterns of SARS-CoV-2 spread into and within Israel. medRxiv. Preprint posted online 22 May 2020. doi:10.1101/2020.05.21.20104521 Google Scholar
  136. Park SY, Kim YM, Yi S, et al. Coronavirus disease outbreak in call center, South Korea. Emerg Infect Dis. 2020;26:1666-1670. [PMID: 32324530] doi:10.3201/eid2608.201274 Google Scholar
  137. Yusef D, Hayajneh W, Awad S, et al. Large outbreak of coronavirus disease among wedding attendees, Jordan. Emerg Infect Dis. 2020;26. [PMID: 32433907] doi:10.3201/eid2609.201469 Google Scholar
  138. Hamner L, Dubbel P, Capron I, et al. High SARS-CoV-2 attack rate following exposure at a choir practice — Skagit County, Washington, March 2020. MMWR Morb Mortal Wkly Rep. 2020;69:606-610. [PMID: 32407303] doi:10.15585/mmwr.mm6919e6 Google Scholar
  139. Szablewski CM, Chang KT, Brown MM, et al. SARS-CoV-2 transmission and infection among attendees of an overnight camp — Georgia, June 2020. MMWR Morb Mortal Wkly Rep. 2020;69:1023-1025. [PMID: 32759921] doi:10.15585/mmwr.mm6931e1 Google Scholar
  140. Payne DC, Smith-Jeffcoat SE, Nowak G, et al; CDC COVID-19 Surge Laboratory Group. SARS-CoV-2 infections and serologic responses from a sample of U.S. Navy service members — USS Theodore Roosevelt, April 2020. MMWR Morb Mortal Wkly Rep. 2020;69:714-721. [PMID: 32525850] doi:10.15585/mmwr.mm6923e4 Google Scholar
  141. Lemieux J, Siddle KJ, Shaw BM, et al. Phylogenetic analysis of SARS-CoV-2 in the Boston area highlights the role of recurrent importation and superspreading events. medRxiv. Preprint posted online 25 August 2020. doi:10.1101/2020.08.23.20178236 Google Scholar
  142. Madewell ZJ, Yang Y, Longini IM Jr, et al. Household transmission of SARS-CoV-2: a systematic review and meta-analysis of secondary attack rate. medRxiv. Preprint posted online 1 August 2020. doi:10.1101/2020.07.29.20164590 Google Scholar
  143. Emeruwa UN, Ona S, Shaman JL, et al. Associations between built environment, neighborhood socioeconomic status, and SARS-CoV-2 infection among pregnant women in New York City. JAMA. 2020. [PMID: 32556085] doi:10.1001/jama.2020.11370 Google Scholar
  144. Cox RJ, Brokstad KA, Krammer F, et al; Bergen COVID-19 Research Group. Seroconversion in household members of COVID-19 outpatients [Letter]. Lancet Infect Dis. 2020. [PMID: 32553187] doi:10.1016/S1473-3099(20)30466-7 Google Scholar